scholarly journals Root-Plate Characteristics of Common Aspen in Hemiboreal Forests of Latvia: A Case Study

Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Valters Samariks ◽  
Dace Brizga ◽  
Jeļena Rūba ◽  
Andris Seipulis ◽  
Āris Jansons

Climate change will cause winds to strengthen and storms to become more frequent in Northern Europe. Windstorms reduce the financial value of forests by bending, breaking, or uprooting trees, and wind-thrown trees cause additional economic losses. The resistance of trees to wind damage depends on tree species, tree- and stand-scale parameters, and root-soil plate characteristics such as root-plate size, weight, and rooting depth. The root-soil plate is a complex structure whose mechanical strength is dependent on root-plate width and depth, as the root system provides root attachment with soil and structural support. In Latvia, the common aspen (Populus tremula L.) root system has been studied to develop a belowground biomass model, because information about root system characteristics in relation to tree wind resistance is scarce. The aim of this study was to assess the root-plate dimensions of common aspen stands on fertile mineral soil (luvisol). Study material was collected in the central region of Latvia, where pure mature (41–60 years old) common aspen stands were randomly selected, and dominant trees within the stand were chosen. In total, ten sample trees from ten stands were uprooted. The diameter at breast height (DBH) and tree height (H) were measured for each sample tree, and their roots were excavated, divided into groups, washed, measured, and weighed. The highest naturally moist biomass values were observed for coarse roots, and fine root biomass was significantly lower compared to other root groups. All root group biomass values had a strong correlation with the tree DBH. The obtained results show that there is a close, negative relationship between the relative distance from the stem and the relative root-plate depth distribution.

1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


2011 ◽  
Vol 37 (5) ◽  
pp. 213-218
Author(s):  
Robert Loeb ◽  
Samuel King

Trees and saplings were felled and killed by rockslides and soil slides formed during the record breaking rains of May 1–2, 2010, in Radnor Lake State Natural Area, Nashville, Tennessee, U.S. The losses were analyzed by species; stem basal area; root plate diameter and depth; percent slope; occurrence in a rockslide or soil slide as well as species classification as a lateral root system species versus tap or heart root system species. The number of stems lost for each species had a distribution similar to the results of the 2009 Natural Area survey but the number of saplings was significantly underrepresented at the landslide sites. Tree deaths were nearly five times greater than saplings lost. Although there were nearly equal numbers of tree and sapling stems classified as possessing a lateral root system versus tap or heart root system, 74% of the sapling losses were from surface root system species. The means for root plate diameter and depth were significantly larger in rockslides than soil slides even though the mean stem basal area did not differ significantly. For both slide types, slope steepness was not correlated with root plate depth, root plate diameter, or stem basal area. Similarly for both root system classi-fications, slope steepness was not significantly correlated except for surface root system trees with root plate depth. Planting tap root system trees reduces the risk of landslide, but advances in the cultivation of taxa, such as hickory (Carya spp.), are needed to assure tap root preservation during transplantation.


2009 ◽  
Vol 51 (1) ◽  
pp. 40-48
Author(s):  
Toomas Frey

Stand structure links up canopy processes and forest management Above- and belowground biomass and net primary production (Pn) of a maturing Norway spruce (Picea abies (L.) Karst.) forest (80 years old) established on brown soil in central Estonia were 227, 50 and 19.3 Mg ha correspondingly. Stand structure is determined mostly by mean height and stand density, used widely in forestry, but both are difficult to measure with high precision in respect of canopy processes in individual trees. However, trunk form quotient (q2) and proportion of living crown in relation to tree height are useful parameters allowing describe stand structure tree by tree. Based on 7 model trees, leaf unit mass assimilation activity and total biomass respiration per unit mass were determined graphically as mean values for the whole tree growth during 80 years of age. There are still several possible approaches not used carefully enough to integrate experimental work at instrumented towers with actual forestry measurement. Dependence of physiological characteristics on individual tree parameters is the missing link between canopy processes and forest management.


2019 ◽  
Vol 99 (6) ◽  
pp. 905-916
Author(s):  
E.W. Bork ◽  
M.P. Lyseng ◽  
D.B. Hewins ◽  
C.N. Carlyle ◽  
S.X. Chang ◽  
...  

While northern temperate grasslands are important for supporting beef production, it remains unclear how grassland above- and belowground biomass responds to long-term cattle grazing. Here, we use a comprehensive dataset from 73 grasslands distributed across a broad agro-climatic gradient to quantify grassland shoot, litter, and shallow (top 30 cm) root biomass in areas with and without grazing. Additionally, we relate biomass to soil carbon (C) concentrations. Forb biomass was greater (p < 0.05) in grazed areas, particularly those receiving more rainfall. In contrast, grass and total aboveground herbage biomass did not differ with grazing (total: 2320 kg ha−1 for grazed vs. 2210 kg ha−1 for non-grazed; p > 0.05). Forb crude protein concentrations were lower (p < 0.05) in grazed communities compared with those that were non-grazed. Grasslands subjected to grazing had 56% less litter mass. Root biomass down to 30 cm remained similar between areas with (9090 kg ha−1) and without (7130 kg ha−1) grazing (p > 0.05). Surface mineral soil C concentrations were positively related to peak grassland biomass, particularly total (above + belowground) biomass, and with increasing forb biomass in grazed areas. Finally, total aboveground shoot biomass and soil C concentrations in the top 15 cm of soil were both positively related to the proportion of introduced plant diversity in grazed and non-grazed grasslands. Overall, cattle grazing at moderate stocking rates had minimal impact on peak grassland biomass, including above- and belowground, and a positive contribution exists from introduced plant species to maintaining herbage productivity and soil C.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 181 ◽  
Author(s):  
Antonio Montagnoli ◽  
Bruno Lasserre ◽  
Gabriella Sferra ◽  
Donato Chiatante ◽  
Gabriella Stefania Scippa ◽  
...  

The coarse roots of Pinus ponderosa included in the cage are the ones most involved in tree stability. This study explored the variations in traits, such as volume, cross-sectional area, and radius length of cage roots, and used those data to develop a mathematical model to better understand the type of forces occurring for each shallow lateral root segment belonging to different quadrants of the three-dimensional (3D) root system architecture. The pattern and intensity of these forces were modelled along the root segment from the branching point to the cage edge. Data of root cage volume in the upper 30 cm of soil showed a higher value in the downslope and windward quadrant while, at a deeper soil depth (>30 cm), we found higher values in both upslope and leeward quadrants. The analysis of radius length and the cross-sectional area of the shallow lateral roots revealed the presence of a considerable degree of eccentricity of the annual rings at the branching point and at the cage edge. This eccentricity is due to the formation of compression wood, and the eccentricity changes from the top portion at the branching point to the bottom portion at the cage edge, which we hypothesize may be a response to the variation in mechanical forces occurring in the various zones of the cage. This hypothesis is supported by a mathematical model that shows how the pattern and intensity of different types of mechanical forces are present within the various quadrants of the same root system from the taproot to the cage edge.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1143 ◽  
Author(s):  
Oskars Krišāns ◽  
Valters Samariks ◽  
Jānis Donis ◽  
Āris Jansons

An increase in extreme weather events is predicted with increasing climate changes. Changes indicate major problems in the future, as Norway spruce (Picea abies L. Karst.) is one of the most important forestry species in Northern Europe and one of the most susceptible to damage from extreme weather events, like windstorms. Root architecture is essential for tree anchorage. However, information of structural root-plate volume and characteristics in relation to tree wind resistance in drained deep peat soils is lacking. Individual tree susceptibility to wind damage is dependent on tree species, soil properties, tree health and root-plate volume. We assessed the structural root-plate dimensions of wind-thrown Norway spruce on freely drained mineral and drained deep peat soils at four trial sites in Latvia, and root-plate measurements were made on 65 recently tipped-up trees and 36 trees from tree-pulling tests on similar soils. Tree height, diameter at breast height, root-plate width and depth were measured. Measurements of structural root-plate width were done in five directions covering 180° of the root-plate; rooting depth was measured on the horizontal and vertical axes of root-plate. Root-plate volume was higher in drained peat soils in comparison to mineral soils, and root-plate width was the main driver of root-plate volume. A decreasing trend was observed in structural root depth distribution with increasing distance from the stem (i.e., from the center to the edge of the root plate) with a greater decrease in mineral soils.


2016 ◽  
Vol 28 (2) ◽  
pp. 195-200
Author(s):  
Stanisława Szczepaniak ◽  
Zdzisław Guzikowski ◽  
Monika Henschke

Abstract Lavender cotton (Santolina chamaecyparissus L.) shoot cuttings, obtained from two-year-old mother plants, were rooted in five different media under an unheated foil tunnel. Two ready-made and widely recommended media were used: Hartmann peat substrate and Ceres peat-coconut substrate, as well as three prepared mixtures: high peat + mineral soil, high peat + perlite and high peat + sand. The influence of medium type on the number of rooted cuttings and the quality of the root system was assessed for two cultivation times during a three-year study after eight weeks from the date of cutting. As far as the ready-made rooting substrates are concerned, Ceres peat-coconut substrate turned out to be better when compared with the Hartmann substrate. The number of high quality rooted cuttings was larger when media containing high peat mixed with either mineral soil or sand were used in comparison with the mixture of high peat and perlite.


2020 ◽  
Author(s):  
Debora Cynthia Maan ◽  
Marie-claire ten Veldhuis ◽  
Bas van de Wiel

&lt;p&gt;We&amp;#160; study&amp;#160; the coupled&amp;#160; action of&amp;#160; water&amp;#160; uptake&amp;#160; and root&amp;#160; development&amp;#160; of&amp;#160; maize&amp;#160; in Rhizotrons under greenhouse conditions. Questions we aim to answer are: What is the effect of a vertical soil moisture gradient on the root growth? How does the root structure in turn influence soil moisture? Do constant&amp;#160; irrigation&amp;#160; quantities and depths eventually lead&amp;#160; to &amp;#160;constant&amp;#160; root&amp;#160; distributions and soil moisture profiles?&lt;/p&gt;&lt;p&gt;We apply highly controlled subsurface irrigation schemes in potting soil-sand mixtures and measure the real-time response of the interdepending soil moisture fields and root structures.&lt;/p&gt;&lt;p&gt;Following a top-down approach, in which the overall behaviour of the coupled system is carefully investigated and described, we aim to unravel the complex soil-root-interaction system. Looking at the occurrence of steady states and continuities sheds light on the type of the underlying feedback loops, which in turn provides insight into the fundamental processes that underlie the typical behaviour. We are particularly interested in trade-offs between the development of rooting depth and rooting density (including its dependency on soil moisture profiles) and the coupled effect of roots and root structures on the infiltration capacity of the soil-root-system. Preliminary results suggest the possibility of an enhancing feedback loop between these processes.&amp;#160;&lt;/p&gt;&lt;p&gt;The next step will be to develop a numerical model that incorporates the interactions that were identified experimentally. The model will allow us to study the behavior and sensitivities of the system in more detail.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Aysan Badraghi ◽  
Maurizio Ventura ◽  
Andrea Polo ◽  
Luigimaria Borruso ◽  
Leonardo Montagnani

AbstractTo understand the main determinants of soil respiration (SR), we investigated the changes of soil respiration and soil physicochemical properties, including soil carbon (C) and nitrogen (N), root C and N, litter C and N, soil bulk densities and soil pH at five forest sites, along an elevation/temperature gradient (404 to 2101 m a.s.l) in Northern Italy, where confounding factors such as aspect and soil parent material are minimized, but an ample variation in forest structure and composition is present. Our result indicated that SR rates increased with temperature in all sites, and about 55% - 76% of SR was explained by temperature. Annual cumulative SR, ranging between 0.65 and 1.40 kg C m-2 yr-1, declined along the elevation gradient, while temperature sensitivity (Q10) of SR increased with elevation. However, a high SR rate (1.27 kg C m-2 yr-1) and low Q10 were recorded in the old conifer forest stand at 1731 m a.s.l., characterized by a complex structure and high productivity, introducing nonlinearity in the relations with elevation and temperature. Reference SR at the temperature of 10°C (SRref) was not related to elevation. A significant linear negative relationship was found for bulk density with elevation. On the contrary, soil C, soil N, root C, root N, pH and litter mass were better fitted by nonlinear relations with elevation. However, it was not possible to confirm a significant correlation of SR with these parameters once the effect of temperature has been removed (SRref). These results show how the main factor affecting SR in forest ecosystems along this Alpine elevation gradient is temperature, but its regulating role can be strongly influenced by site biological characteristics, particularly vegetation type and structure. This study also confirms that high elevation sites are rich in C stored in the soil and also more sensitive to climate change, being prone to high carbon losses as CO2. Conversely, forest ecosystems with a complex structure, with high SRref and moderate Q10, can be more resilient.


Sign in / Sign up

Export Citation Format

Share Document