scholarly journals A Quasi-Nondestructive Evaluation Method for Physical-Mechanical Properties of Fragile Archaeological Wood with TMA: A Case Study of an 800-Year-Old Shipwreck

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Mengruo Wu ◽  
Xiangna Han ◽  
Zhenfang Qin ◽  
Zhiguo Zhang ◽  
Guanglan Xi ◽  
...  

Archaeological wood is a kind of ‘new material’ that has deteriorated due to long-term degradation. The existing wood science theory and evaluation methods are not fully applicable to archaeological wood. Moreover, current physical-mechanical evaluation methods are inadequate for fragile archaeological wood due to their insufficient accuracy and the large sample amount required, causing difficulties in many necessary physical-mechanical repeatability tests. In light of these limitations, the representative samples on Nanhai No. 1, a merchant shipwreck in the Song Dynasty, were selected as the research objects in this paper. The shipwreck is a typical waterlogged wooden artifact. A quasi-nondestructive physical-mechanical evaluation technique for archaeological wood was developed with the thermomechanical analyzer (TMA). This study used TMA to evaluate the bending strength of representative waterlogged archaeological samples of Nanhai No. 1 shipwreck and sound wood with the same species. Besides, the thermal linear expansion coefficients in the ambient temperature range were obtained. The sizes of the samples used in the tests were only 2 mm × 8 mm × 0.3 mm and 1 cm × 1 cm × 1 cm, respectively. Bending strength results of archaeological wood by the TMA method conformed to the tendency that the bending strength decreases with the increase of decay degree. In addition, the longitudinal linear expansion coefficients of archaeological wood reached 80%–115% of those in the transverse grain direction, which were about 10 times higher than those of the sound wood. The linear expansion coefficients of archaeological wood in three directions were similar. Based on the results of Fourier transform infrared analysis (FT-IR), the significant differences in the physical-mechanical properties of the archaeological wood and the sound wood were induced to be mainly ascribed to the decomposition and the loss of hemicellulose in the archaeological wood. The cell wall substrate could not stabilize the cellulose skeleton, which led to the instability of the tracheid structure of the archaeological wood. This study provided a proven quasi-nondestructive method for the preservation state evaluation of waterlogged archaeological wood (WAW) from the Nanhai I shipwreck and other similar waterlogged wooden relics.

2015 ◽  
Vol 656-657 ◽  
pp. 266-270 ◽  
Author(s):  
Takekazu Sawa ◽  
Naohiro Nishikawa ◽  
Yasushi Ikuse

There is the grade as one of the selection criteria of a grinding wheel like WA whetstone or GC whetstone. The grade of grinding wheel is defined as an index which shows the strength of connection of a grain and a grain, and is usually estimated by bending strength. There are many papers about the relationship between the grade of a grinding wheel and the grinding performance. And, the relationship between the grade of a grinding wheel and the grinding performance is almost clear. Also, the relationship between mechanical properties of a grinding wheel and the grade is also clear. On the other hand, since the grain layer of a super abrasive grinding wheel is thin, it is difficult to apply the conventional evaluation test of the grade. And, the evaluation method of the grade which can be adapted the super abrasive grinding wheel is not established. In addition, since the grade of a super abrasive grinding wheel is a manufacture manufacturer's original standard, there is a minute difference by manufacturer. The super abrasive grinding wheel as well as the grinding wheel is conjectured that the grade influences the grinding performance. Namely, it is important to relate the grade and the mechanical properties of a grain layer. However, researches which relate the grade, the grinding performance and the mechanical properties of a super abrasive grinding wheel are not done so far. Therefore, this study examined the relationship between the mechanical properties of a grain layer of a super abrasive grinding wheel and the grade, the grinding performance. The final objective of this study is to evaluate the grinding performance from mechanical properties of a grain layer of a super abrasive grinding wheel. The purpose of this report is to clarify relationship between the grade and the grinding force in a resinoid bond diamond wheel. The specific experiment procedure is as follows. When carrying out surface grinding of the diamond sticks using a grinding wheel, the relationship of the grade and the grinding force was clarified. And based on the knowledge acquired in this experiment, relationship between the grade of a super abrasive grinding wheel and the grinding force was considered. As the results, it confirmed that the grade of a resinoid bond diamond wheel could be evaluated by the grinding force.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Author(s):  
Adrian Circiumaru ◽  
Vasile Bria ◽  
Iulian-Gabriel Birsan ◽  
Gabriel Andrei ◽  
Dumitru Dima

The multi-component composites could represent the cheapest solution when controllable properties are required. In order to establish the right amount of filler it is necessary to analyze not only the electro-magnetic and mechanical properties but also, the thermal ones. The filler presence in the matrix produces discontinuities at the fibre-matrix interface with consequences regarding mechanical properties. Using a single filler it is possible to improve one or two properties electrical and thermal conductivity for instance and mean time to induce a decrease of other properties as bending strength, shock resistance etc. Using polymer layers with relatively high electrical conductivity as external layers of laminate and magnetic particles filled polymer as core layers. An electric circuit might be, at the same time, the reinforcement of a composite leading to lighter structures and, based on carbon fiber’s properties might transmit information about the material’s loading, temperature or integrity. Fabric reinforced or textile composites are used in aerospace, automotive, naval and other applications. They are convenient material forms providing adequate stiffness and strength in many structures. The microstructure of composite reinforced with woven, braided, or stitched networks is significantly different from that of tape based laminates. The properties of the composite depend not only on the properties of the components but on quality and nature of the interface between the components and its properties. Reinforced composites with filled epoxy matrix were formed using a hybrid technique consisting in layer-by-layer adding of reinforcement sheets into a glass mould. Various distributions of reinforcement sheets and filled polymer layers were realized in order to point out the ways in which the final properties might be controlled. Mechanical properties were analyzed.


2014 ◽  
Vol 551 ◽  
pp. 621-625
Author(s):  
Nan Chu Guo

The paper proposes an ideal approach of shape design by using shape evaluation methods accurately. The paper proposes and tests the comprehensive fuzzy evaluation method using a case of two clips based on genetic algorithm and quantitative methods. By using this evaluation method, the shape details of a product could be improved gradually.


2014 ◽  
Vol 891-892 ◽  
pp. 1639-1644 ◽  
Author(s):  
Kazutaka Mukoyama ◽  
Koushu Hanaki ◽  
Kenji Okada ◽  
Akiyoshi Sakaida ◽  
Atsushi Sugeta ◽  
...  

The aim of this study is to develop a statistical estimation method of S-N curve for iron and structural steels by using their static mechanical properties. In this study, firstly, the S-N data for pure iron and structural steels were extracted from "Database on fatigue strength of Metallic Materials" published by the Society of Materials Science, Japan (JSMS) and S-N curve regression model was applied based on the JSMS standard, "Standard Evaluation Method of Fatigue Reliability for Metallic Materials -Standard Regression Method of S-N Curve-". Secondly, correlations between regression parameters and static mechanical properties were investigated. As a result, the relationship between the regression parameters and static mechanical properties (e.g. fatigue limit E and static tensile strength σB) showed strong correlations, respectively. Using these correlations, it is revealed that S-N curve for iron and structural steels can be predicted easily from the static mechanical properties.


2013 ◽  
Vol 671-674 ◽  
pp. 3147-3151
Author(s):  
Yun Na Wu ◽  
Chao Liu ◽  
Mandula Naren ◽  
He Ping Wang ◽  
Jian Chen

The construction project bidding is a feasible method in engineering transactions and the main competition form of the construction activities under the conditions of the market economy. The bid assessment is an important link of bidding, and whether bid evaluation method is scientific or not, is directly related to the success of the tender. In the engineering construction field, at present the current commonly used evaluation methods are the comprehensive evaluation method and the lowest bidding price evaluation method. Based on fuzzy set theory and multi-objective people decision theory, we introduce fuzzy multi-objective people decision-making evaluation methods. And conducting research to put forward the evaluation index and weight method to determine the bidding decision model. Finally we apply it to actual case to make out the more standardized and scientific bidding evaluation method.


2008 ◽  
Vol 591-593 ◽  
pp. 271-276 ◽  
Author(s):  
M.A. Martinez ◽  
R. Calabrés ◽  
J. Abenojar ◽  
Francisco Velasco

In this work, ultrahigh carbon steels (UHCS) obtained by powder metallurgy with CIP and argon sintered at 1150°C. Then, they were rolled at 850 °C with a reduction of 40 %. Finally, steels were quenched at 850 and 1000 °C in oil. In each step, hardness, bending strength and wear performance were evaluated. Obtained results are justified with a metallographic study by SEM. Both mechanical properties and wear resistance are highly favoured with the thermomechanical treatment that removes the porosity of the material. Moreover, final quenching highly hardens the material. The obtained material could be used as matrix for tool steels.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


Sign in / Sign up

Export Citation Format

Share Document