scholarly journals The Multiple and Versatile Roles of Aureobasidium pullulans in the Vitivinicultural Sector

Fermentation ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 85 ◽  
Author(s):  
Despina Bozoudi ◽  
Dimitrios Tsaltas

The saprophytic yeast-like fungus Aureobasidium pullulans has been well documented for over 60 years in the microbiological literature. It is ubiquitous in distribution, being found in a variety of environments (plant surfaces, soil, water, rock surfaces and manmade surfaces), and with a worldwide distribution from cold to warm climates and wet/humid regions to arid ones. Isolates and strains of A. pullulans produce a wide range of natural products well documented in the international literature and which have been regarded as safe for biotechnological and environmental applications. Showing antagonistic activity against plant pathogens (especially post-harvest pathogens) is one of the major applications currently in agriculture of the fungus, with nutrient and space competition, production of volatile organic compounds, and production of hydrolytic enzymes and antimicrobial compounds (antibacterial and antifungal). The fungus also shows a positive role on mycotoxin biocontrol through various modes, with the most striking being that of binding and/or absorption. A. pullulans strains have been reported to produce very useful industrial enzymes, such as β-glucosidase, amylases, cellulases, lipases, proteases, xylanases and mannanases. Pullulan (poly-α-1,6-maltotriose biopolymer) is an A. pullulans trademark product with significant properties and biotechnological applications in the food, cosmetic and pharmaceutical industries. Poly (β-l-malic acid), or PMA, which is a natural biopolyester, and liamocins, a group of produced heavy oils and siderophores, are among other valuable compounds detected that are of possible biotechnological use. The fungus also shows a potential single-cell protein source capacity with high levels of nucleic acid components and essential amino acids, but this remains to be further explored. Last but not least, the fungus has shown very good biocontrol against aerial plant pathogens. All these properties are of major interest in the vitivinicultural sector and are thoroughly reviewed under this prism, concluding on the importance that A. pullulans may have if used at both vineyard and winery levels. This extensive array of properties provides excellent tools for the viticulturist/farmer as well as for the oenologist to combat problems in the field and create a high-quality wine.

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Ria Mukhopadhyay ◽  
Deepak Kumar

Abstract Background Agriculture is an indispensable part of any country to feed the millions of people but it is under constant threat of pests. To protect the crops from this huge yield loss recently, chemical pesticides are used. Though chemical pesticides have shown effective results in killing the crop pests, it causes negative impact on the environment as well as humans. So to find an eco-friendly alternative, biological control methods are being used. Main body Biological control is a great renaissance of interest and research in microbiological balance to control soil-borne plant pathogens and leads to the development of a better farming system. In biological control, genus Trichoderma serves as one of the best bioagents, which is found to be effective against a wide range of soil and foliar pathogens. Genus Trichoderma is a soil inhabiting green filamentous fungus, which belongs to the division Ascomycota. The efficacy of Trichoderma depends on many abiotic parameters such as soil pH, water retention, temperature and presence of heavy metals. The biocontrol potential of Trichoderma spp. is due to their complex interaction with plant pathogens either by parasitizing them, secreting antibiotics or by competing for space and nutrients. During mycoparasitic interactions, production of hydrolytic enzymes such as glucanase, chitinase and protease and also signalling pathways are initiated by Trichoderma spp. and the important ones are Heterotrimeric G protein, MAP kinase and cAMP pathway. G protein and MAPK are mainly involved in secretion of antifungal metabolites and the formation of infection structures. cAMP pathway helps in the condition and coiling of Trichoderma mycelium on pathogenic fungi and inhibits their proliferation. Short conclusion Trichoderma being an efficient biocontrol agent, their characteristics and mechanisms should be well understood to apply them in field conditions to restrict the proliferation of phytopathogens.


2020 ◽  
pp. 41-46
Author(s):  
A. Ya. Khleborodov ◽  
I. M. Pochitskaya ◽  
O. S. Provotorova ◽  
P. A. Skripkovich

Relevance and methods. Pumpkin fruits and seeds are valuable raw materials for the food and pharmaceutical industries. Of particular value are pumpkin seeds, from which oil and protein products are obtained. The purpose of our research is to identify the best breeding samples of pumpkin in terms of seed yield and pumpkin oil and to study their biochemical composition. The evaluation of 12 samples of pumpkin was carried out according to the main economic and biological characteristics. Results. According to the yield of seeds and the yield of pumpkin oil, the following samples were distinguished: Delta, Golosemyanno-kustovaya, Line 2-3, Line 2-5. The biochemical composition of seed samples with high seed yields was studied in terms of the content of proteins, fats, carbohydrates, amino acids, fatty acids, vitamins and minerals. A biochemical analysis of pumpkin seed oil for fatty acids, sterols and minerals was carried out. Seeds of hard-barked pumpkin of Belarusian selection are sources of high protein content (34-35%) with a wide range of essential amino acids, fats (43-45.8%), unsaturated and saturated fatty acids, as well as carbohydrates (9.6-11.9%) , a number of vitamins, macro- and microelements.


2017 ◽  
Vol 114 (4) ◽  
pp. E560-E569 ◽  
Author(s):  
Christian Derntl ◽  
Bernhard Kluger ◽  
Christoph Bueschl ◽  
Rainer Schuhmacher ◽  
Robert L. Mach ◽  
...  

Fungi can produce a wide range of chemical compounds via secondary metabolism. These compounds are of major interest because of their (potential) application in medicine and biotechnology and as a potential source for new therapeutic agents and drug leads. However, under laboratory conditions, most secondary metabolism genes remain silent. This circumstance is an obstacle for the production of known metabolites and the discovery of new secondary metabolites. In this study, we describe the dual role of the transcription factor Xylanase promoter binding protein 1 (Xpp1) in the regulation of both primary and secondary metabolism of Trichoderma reesei. Xpp1 was previously described as a repressor of xylanases. Here, we provide data from an RNA-sequencing analysis suggesting that Xpp1 is an activator of primary metabolism. This finding is supported by our results from a Biolog assay determining the carbon source assimilation behavior of an xpp1 deletion strain. Furthermore, the role of Xpp1 as a repressor of secondary metabolism is shown by gene expression analyses of polyketide synthases and the determination of the secondary metabolites of xpp1 deletion and overexpression strains using an untargeted metabolomics approach. The deletion of Xpp1 resulted in the enhanced secretion of secondary metabolites in terms of diversity and quantity. Homologs of Xpp1 are found among a broad range of fungi, including the biocontrol agent Trichoderma atroviride, the plant pathogens Fusarium graminearum and Colletotrichum graminicola, the model organism Neurospora crassa, the human pathogen Sporothrix schenckii, and the ergot fungus Claviceps purpurea.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Imen Belgacem ◽  
Maria G. Li Destri Nicosia ◽  
Sonia Pangallo ◽  
Ahmed Abdelfattah ◽  
Massimo Benuzzi ◽  
...  

Although the Green Revolution was a milestone in agriculture, it was accompanied by intensive use of synthetic pesticides, which has raised serious concerns due to their impact on human and environmental health. This is increasingly stimulating the search for safer and more eco-friendly alternative means to control plant diseases and prevent food spoilage. Among the proposed alternatives, pomegranate peel extracts (PPEs) are very promising because of their high efficacy. In the present review, we discuss the complex mechanisms of action that include direct antimicrobial activity and induction of resistance in treated plant tissues and highlight the importance of PPE composition in determining their activity. The broad spectrum of activity, wide range of application and high efficiency of PPEs against bacterial, fungal and viral plant pathogens suggest a potential market not only restricted to organic production but also integrated farming systems. Considering that PPEs are non-chemical by-products of the pomegranate industry, they are perceived as safe by the public and may be integrated in circular economy strategies. This will likely encourage agro-pharmaceutical industries to develop commercial formulations and speed up the costly process of registration.


2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2020 ◽  
Vol 17 (1) ◽  
pp. 66-74
Author(s):  
Seghira Bisset ◽  
Widad Sobhi ◽  
Chawki Bensouici ◽  
Abdelhalim Khenchouche

Background: Several researches have shown that therapeutic compounds or phytochemicals from natural sources are important in the food as it is valuable in pharmaceutical industries due to their fewer side effects and potent against various diseases. Curcumin, a major polyphenol derived from turmeric spice, which used in many foods, has a wide range of biological activities, with quite a safety. Objective: The goal of this study was to investigate the antioxidant, urate-lowering, and antiinflammatory effects of pure curcumin. Methods: The antioxidant activity was evaluated for chain-breaking antioxidant effect (radicalscavenging and reducing abilities assays) and for preventive antioxidant effect with metal chelating assay, the urate-lowering was assayed on aspectrophotometer by measuring the inhibition of uric acid production by xanthine oxidase (XO) enzyme, and the anti-inflammatory effect was estimated using in vitro albumin denaturation inhibition. Results: Curcumin showed a significant and good chain-breaking antioxidant effect, both in free radical- scavenging assays (Galvinoxyl radical, ABTS, and hydroxyl radical), and in reducing abilities methods (reducing power, Cupric ion reducing antioxidant capacity and O-phenanthroline assays). In preventive antioxidant effect, assessed with the metal chelating assay, curcumin showed significant effect but with high concentration compared with standard. In the xanthine/xanthine oxidase system, curcumin significantly inhibited uric acid production (IC50=0.71 ± 0.06 mg/mL). Regarding antiinflammatory activity, curcumin showed significant inhibition of albumin denaturation with an IC50 value of 1181.69 ± 1.11μg/mL. Conclusion: These results indicated that curcumin showed promising antioxidant, anti-gout and antiinflammatory properties and might be used as potential, natural drugs against oxidative and inflammation- related diseases.


2020 ◽  
Vol 10 (1) ◽  
pp. 44-60
Author(s):  
Mohamed E.I. Badawy ◽  
Entsar I. Rabea ◽  
Samir A.M. Abdelgaleil

Background:Monoterpenes are the main constituents of the essential oils obtained from plants. These natural products offered wide spectra of biological activity and extensively tested against microbial pathogens and other agricultural pests.Methods:Antifungal activity of 10 monoterpenes, including two hydrocarbons (camphene and (S)- limonene) and eight oxygenated hydrocarbons ((R)-camphor, (R)-carvone, (S)-fenchone, geraniol, (R)-linalool, (+)-menthol, menthone, and thymol), was determined against fungi of Alternaria alternata, Botrytis cinerea, Botryodiplodia theobromae, Fusarium graminearum, Phoma exigua, Phytophthora infestans, and Sclerotinia sclerotiorum by the mycelia radial growth technique. Subsequently, Quantitative Structure-Activity Relationship (QSAR) analysis using different molecular descriptors with multiple regression analysis based on systematic search and LOOCV technique was performed. Moreover, pharmacophore modelling was carried out using LigandScout software to evaluate the common features essential for the activity and the hypothetical geometries adopted by these ligands in their most active forms.Results:The results showed that the antifungal activities were high, but depended on the chemical structure and the type of microorganism. Thymol showed the highest effect against all fungi tested with respective EC50 in the range of 10-86 mg/L. The QSAR study proved that the molecular descriptors HBA, MR, Pz, tPSA, and Vp were correlated positively with the biological activity in all of the best models with a correlation coefficient (r) ≥ 0.98 and cross-validated values (Q2) ≥ 0.77.Conclusion:The results of this work offer the opportunity to choose monoterpenes with preferential antimicrobial activity against a wide range of plant pathogens.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


Sign in / Sign up

Export Citation Format

Share Document