scholarly journals Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism

2017 ◽  
Vol 114 (4) ◽  
pp. E560-E569 ◽  
Author(s):  
Christian Derntl ◽  
Bernhard Kluger ◽  
Christoph Bueschl ◽  
Rainer Schuhmacher ◽  
Robert L. Mach ◽  
...  

Fungi can produce a wide range of chemical compounds via secondary metabolism. These compounds are of major interest because of their (potential) application in medicine and biotechnology and as a potential source for new therapeutic agents and drug leads. However, under laboratory conditions, most secondary metabolism genes remain silent. This circumstance is an obstacle for the production of known metabolites and the discovery of new secondary metabolites. In this study, we describe the dual role of the transcription factor Xylanase promoter binding protein 1 (Xpp1) in the regulation of both primary and secondary metabolism of Trichoderma reesei. Xpp1 was previously described as a repressor of xylanases. Here, we provide data from an RNA-sequencing analysis suggesting that Xpp1 is an activator of primary metabolism. This finding is supported by our results from a Biolog assay determining the carbon source assimilation behavior of an xpp1 deletion strain. Furthermore, the role of Xpp1 as a repressor of secondary metabolism is shown by gene expression analyses of polyketide synthases and the determination of the secondary metabolites of xpp1 deletion and overexpression strains using an untargeted metabolomics approach. The deletion of Xpp1 resulted in the enhanced secretion of secondary metabolites in terms of diversity and quantity. Homologs of Xpp1 are found among a broad range of fungi, including the biocontrol agent Trichoderma atroviride, the plant pathogens Fusarium graminearum and Colletotrichum graminicola, the model organism Neurospora crassa, the human pathogen Sporothrix schenckii, and the ergot fungus Claviceps purpurea.

2020 ◽  
Vol 21 (22) ◽  
pp. 8698
Author(s):  
Takayuki Motoyama

Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.


2015 ◽  
Vol 28 (3) ◽  
pp. 232-248 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Marina Marcet-Houben ◽  
Elena Levin ◽  
Noa Sela ◽  
Cristina Selma-Lázaro ◽  
...  

The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in MPMI's June 2015 issue.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 271
Author(s):  
Xiuna Wang ◽  
Wenjie Zha ◽  
Linlin Liang ◽  
Opemipo Esther Fasoyin ◽  
Lihan Wu ◽  
...  

Fungal secondary metabolites play important roles not only in fungal ecology but also in humans living as beneficial medicine or harmful toxins. In filamentous fungi, bZIP-type transcription factors (TFs) are associated with the proteins involved in oxidative stress response and secondary metabolism. In this study, a connection between a bZIP TF and oxidative stress induction of secondary metabolism is uncovered in an opportunistic pathogen Aspergillus flavus, which produces carcinogenic and mutagenic aflatoxins. The bZIP transcription factor AflRsmA was identified by a homology research of A. flavus genome with the bZIP protein RsmA, involved in secondary metabolites production in Aspergillus nidulans. The AflrsmA deletion strain (ΔAflrsmA) displayed less sensitivity to the oxidative reagents tert-Butyl hydroperoxide (tBOOH) in comparison with wild type (WT) and AflrsmA overexpression strain (AflrsmAOE), while AflrsmAOE strain increased sensitivity to the oxidative reagents menadione sodium bisulfite (MSB) compared to WT and ΔAflrsmA strains. Without oxidative treatment, aflatoxin B1 (AFB1) production of ΔAflrsmA strains was consistent with that of WT, but AflrsmAOE strain produced more AFB1 than WT; tBOOH and MSB treatment decreased AFB1 production of ΔAflrsmA compared to WT. Besides, relative to WT, ΔAflrsmA strain decreased sclerotia, while AflrsmAOE strain increased sclerotia. The decrease of AFB1 by ΔAflrsmA but increase of AFB1 by AflrsmAOE was on corn. Our results suggest that AFB1 biosynthesis is regulated by AflRsmA by oxidative stress pathways and provide insights into a possible function of AflRsmA in mediating AFB1 biosynthesis response host defense in pathogen A. flavus.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Ana M. L. Seca ◽  
Antoaneta Trendafilova

Secondary metabolites are organic molecules of low molecular weight, biosynthesized by any living being using a wide range of biosynthetic pathways, known as secondary metabolism [...]


2021 ◽  
Author(s):  
Lucas A. Meirelles ◽  
Dianne K. Newman

ABSTRACTBacterial opportunistic pathogens make a wide range of secondary metabolites both in the natural environment and when causing infections, yet how these molecules mediate microbial interactions and their consequences for antibiotic treatment are still poorly understood. Here, we explore the role of two redox-active secondary metabolites, pyocyanin and toxoflavin, as interspecies modulators of antibiotic resilience. We find that these molecules dramatically change susceptibility levels of diverse bacteria to clinical antibiotics. Pyocyanin is made by Pseudomonas aeruginosa, while toxoflavin is made by Burkholderia gladioli, organisms that infect cystic fibrosis and other immunocompromised patients. Both molecules alter the susceptibility profile of pathogenic species within the “Burkholderia cepacia complex” to different antibiotics, either antagonizing or potentiating their effects, depending on the drug’s class. Defense responses regulated by the redox-sensitive transcription factor SoxR potentiate the antagonistic effects these metabolites have against fluoroquinolones, and the presence of genes encoding SoxR and the efflux systems it regulates can be used to predict how these metabolites will affect antibiotic susceptibility of different bacteria. Finally, we demonstrate that inclusion of secondary metabolites in standard protocols used to assess antibiotic resistance can dramatically alter the results, motivating the development of new tests for more accurate clinical assessment.


Author(s):  
Yuntian Shen ◽  
Ran Li ◽  
Shu Yu ◽  
Qiang Zhao ◽  
Zhuoran Wang ◽  
...  

Background Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6‐KI (short‐form ATF6 knock‐in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6‐KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro‐proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum–associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6‐KI brain. Accordingly, the CA‐induced increase in K48‐linked polyubiquitin in the brain was higher in sATF6‐KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 1-4 ◽  
Author(s):  
Qun Hu ◽  
Wilhelm Boland ◽  
Ji-Kai Liu

To characterize the role of the phytotoxin mimic 6-substituted indanoyl isoleucine conjugate 1 in plant secondary metabolism, tobacco (Nicotiana tabacum L. K326) was treated with compound 1. The volatile compounds of tobacco leaves were analyzed by GC-MS. In contrast to the control, three compounds, farnesene (2), santalol (3) and tetradecanal (4), were induced by treatment with 1 mm of compound 1. Concurrently other volatile compounds were also regulated.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2401-2401
Author(s):  
Blanche P Alter ◽  
Philip S. Rosenberg ◽  
Thomas Day ◽  
Stephan Menzel ◽  
Neelam Giri ◽  
...  

Abstract Abstract 2401 Patients with inherited bone marrow failure syndromes (IBMFS) frequently have manifestations of what has been called “stress erythropoiesis”. This includes macrocytosis (increased mean cell volume, MCV), increased fetal hemoglobin (Hb F) and erythropoietin (Epo) levels higher than predicted by the degree of anemia (red blood cell count, RBC). In patients with hemoglobinopathies (sickle cell disease, thalassemia, and hereditary persistence of fetal hemoglobin), Hb F levels are regulated by 3 quantitative trait loci (QTL), located at HBSIL-MYB on chromosome 6q, BCLIIA on chromosome 2p and XMN1-Gg representing HBB cluster on chromosome 11p. The role of these QTLs in the elevated Hb F levels in patients with an IBMFS has not been previously reported. Percent Hb F was measured by HPLC in blood from 97 untransplanted individuals with an IBMFS. Absolute Hb F (g/dL) was calculated by multiplication of Hb F% times total Hb in order to include data from transfused patients, and log-transformed to approximate a normal distribution. Epo levels were also log-transformed due to the wide range (8 to 1800 mU/mL). DNA was extracted from leukocytes, and candidate regions were amplified and genotyped by TaqMan. The candidate QTLs were evaluated by genotyping of tagging single nucleotide polymorphisms (SNPs): five for HBSIL-MYB, two for BCLIIA, and one for XMN1-Gg. Data were modeled using a generalized linear model (GLM), appropriate for data with a constant coefficient of variation. There were 31 patients with Diamond-Blackfan anemia (DBA), 35 with dyskeratosis congenita (DC), 25 with Fanconi anemia (FA), and 6 with Shwachman-Diamond syndrome (SDS). Hb F was elevated in 70% of the total group of patients: 48% of DBA, 83% of DC, 76% of FA, and 83% of SDS. In the pooled group of 97 IBMFS patients, 68 (70%) had Hb F >1 % (upper limit of normal), 59 (61%) were macrocytic, 55 (57%) were anemic for age, and 70 (77%) had elevated Epo. The frequencies of heterozygosity or homozygosity for the alternative alleles for the QTLs were 50% for HBSIL-MYB, >90% for BCLIIA, and 52% for XMN1-Gg. The multivariate model for Hb F in the total goup of IBMFS included the alternative allele for the XMN1-Gg SNP (p = 0.04), younger age (p<0.001), male sex (p=0.04), and increased Epo (p<0.001). In this model, the alternative allele for the XMN1-Gg QTL was associated with a 32% increase in the level of Hb F. Subset analyses indicated that the strongest association of the XMN1-Gg QTL was in FA and DC (increased Hb F by 68% and 48% respectively, p-values 0.02 and 0.09) and had no effect in DBA (decreased Hb F by 18%, p = 0.6). Data including the other QTLs were not significant. These results suggest that the alternative allele at XMN1-Gg is associated with the increased level of Hb F in FA and DC, but not DBA, after adjustment for age, sex, and Epo level. A low level of Hb F should not exclude the diagnosis of an IBMFS in a patient who has other signs of stress erythropoiesis (anemia with increased MCV and Epo), since that patient may not have the variant allele associated with increased Hb F. The degree of elevation of Hb F in FA and DC depends on the alleles at the XMN1-Gg QTL. A strength of this study is the sample size of almost 100 patients with an IBMFS who are well-characterized. A limitation is that the number within each syndrome is still small; the role of the other QTLs may be identified in future larger studies. Of major interest is that this is the first study to show regulation of Hb F by the same QTL in FA and DC as the common hemoglobinopathies, thus linking Hb F regulation across disparate hematologic disorders. Disclosures: No relevant conflicts of interest to declare.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 675
Author(s):  
Marzia Vergine ◽  
Francesca Nicolì ◽  
Erika Sabella ◽  
Alessio Aprile ◽  
Luigi De Bellis ◽  
...  

During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.


2019 ◽  
Vol 109 (7) ◽  
pp. 1246-1256 ◽  
Author(s):  
Pari Madloo ◽  
Margarita Lema ◽  
Marta Francisco ◽  
Pilar Soengas

Glucosinolates (GSLs) are secondary metabolites present in Brassicaceae species implicated in their defense against plant pathogens. When a pathogen causes tissue damage, the enzyme myrosinase hydrolyzes GSLs into diverse products that exhibit antimicrobial activity against a wide range of bacteria and fungi in vitro. It was demonstrated that modulation of GSL content in vivo affects plant resistance to infection by pathogens in Arabidopsis. However, the roles of specific metabolites and how they interact with pathogens are poorly understood in Brassica crops. We previously developed a set of populations of Brassica oleracea var. acephala L. (kale) differing in content of three GSLs: the aliphatics sinigrin (2-propenyl [SIN]) and glucoiberin (3-methylsulphinylpropyl [GIB]) and the indolic glucobrassicin (3-indolylmethyl [GBS]). These populations can be used to study the effects of major GSLs in kale, with the advantage that genotypes within each selection have the same genetic background. This research aimed to explore the role of SIN, GIB, and GBS in the defense of kale against the necrotrophic fungus Sclerotinia sclerotiorum and the bacterium Xanthomonas campestris pv. campestris. Results showed that increasing the amount of a particular GSL did not always result in disease resistance. The effects of GSLs were apparently dependent on the pathogen and the type of GSL. Thus, the aliphatic SIN was inhibitory to infection by S. sclerotiorum and the indolic GBS was inhibitory to infection by X. campestris pv. campestris. Other factors, including the quantity and proportion of other metabolites modified during the pathogen infection process, could also modulate the degree of inhibition to the pathogen.


Sign in / Sign up

Export Citation Format

Share Document