An Image Authentication Scheme Using Merkle Tree Mechanisms

2019 ◽  
Vol 11 (7) ◽  
pp. 149
Author(s):  
Yi-Cheng Chen ◽  
Yueh-Peng Chou ◽  
Yung-Chen Chou

Research on digital image processing has become quite popular and rapid in recent years, and scholars have proposed various image verification mechanisms. Similarly , blockchain technology has also become very popular in recent years. This paper proposes a new image verification mechanism based on the Merkle tree technique in the blockchain. The Merkle tree root in the blockchain mechanism provides a reliable environment for storage of image features. In image verification, the verification of each image can be performed by the Merkle tree mechanism to obtain the hash value of the Merkle tree node on the path. In addition, the method combines the Inter-Planetary File System (IPFS) to improve the availability of images. The main purpose of this paper is to achieve the goal of image integrity verification. The proposed method can not only verify the integrity of the image but also restore the tampered area in the case of image tampering. Since the proposed method employs the blockchain mechanism, the image verification mechanism does not need third party resources . The verification method is performed by each node in the blockchain network. The experimental results demonstrate that the proposed method successfully achieved the goal of image authentication and tampered area restoration.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xu Zhang ◽  
Xilin Liu ◽  
Yang Chen ◽  
Huazhong Shu

A new blind integrity verification method for medical image is proposed in this paper. It is based on a new kind of image features, known as Krawtchouk moments, which we use to distinguish the original images from the modified ones. Basically, with our scheme, image integrity verification is accomplished by classifying images into the original and modified categories. Experiments conducted on medical images issued from different modalities verified the validity of the proposed method and demonstrated that it can be used to detect and discriminate image modifications of different types with high accuracy. We also compared the performance of our scheme with a state-of-the-art solution suggested for medical images—solution that is based on histogram statistical properties of reorganized block-based Tchebichef moments. Conducted tests proved the better behavior of our image feature set.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Kai He ◽  
Chunxiao Huang ◽  
Jiaoli Shi ◽  
Xinrong Hu ◽  
Xiying Fan

Cloud storage provides elastic storage services for enterprises and individuals remotely. However, security problems such as data integrity are becoming a major obstacle. Recently, blockchain-based verification approaches have been extensively studied to get rid of a centralized third-party auditor. Most of these schemes suffer from poor scalability and low search efficiency and even fail to support data dynamic update operations on blockchain, which limits their large-scale and practical applications. In this work, we propose a blockchain-based dynamic data integrity verification scheme for cloud storage with T-Merkle hash tree. A decentralized scheme is proposed to eliminate the restrictions of previous centralized schemes. The data tags are generated by the technique of ZSS short signature and stored on blockchain. An improved verification method is designed to check the integrity of cloud data by transferring computation from a verifier to cloud server and blockchain. Furthermore, a storage structure called T-Merkle hash tree which is built based on T-tree and Merkle hash tree is designed to improve storage utilization of blockchain and support binary search on chain. Moreover, we achieve efficient and secure dynamic update operations on blockchain by an append-only manner. Besides, we extend our scheme to support batch verification to handle massive tasks simultaneously; thus, the efficiency is improved and communication cost is reduced. Finally, we implemented a prototype system based on Hyperledger Fabric to validate our scheme. Security analysis and performance studies show that the proposed scheme is secure and efficient.


2019 ◽  
Vol 5 (1) ◽  
pp. 15-22
Author(s):  
Ardian Thresnantia Atmaja

The key objectives of this paper is to propose a design implementation of blockchain based on smart contract which have potential to change international mobile roaming business model by eliminating third-party data clearing house (DCH). The analysis method used comparative analysis between current situation and target architecture of international mobile roaming business that commonly used by TOGAF Architecture Development Method. The purposed design of implementation has validated the business value by using Total Cost of Ownership (TCO) calculation. This paper applies the TOGAF approach in order to address architecture gap to evaluate by the enhancement capability that required from these three fundamental aspect which are Business, Technology and Information. With the blockchain smart contract solution able to eliminate the intermediaries Data Clearing House system, which impacted to the business model of international mobile roaming with no more intermediaries fee for call data record (CDR) processing and open up for online billing and settlement among parties. In conclusion the business value of blockchain implementation in the international mobile roaming has been measured using TCO comparison between current situation and target architecture that impacted cost reduction of operational platform is 19%. With this information and understanding the blockchain technology has significant benefit in the international mobile roaming business.


2021 ◽  
Vol 11 (9) ◽  
pp. 4011
Author(s):  
Dan Wang ◽  
Jindong Zhao ◽  
Chunxiao Mu

In the field of modern bidding, electronic bidding leads a new trend of development, convenience and efficiency and other significant advantages effectively promote the reform and innovation of China’s bidding field. Nowadays, most systems require a strong and trusted third party to guarantee the integrity and security of the system. However, with the development of blockchain technology and the rise of privacy protection, researchers has begun to emphasize the core concept of decentralization. This paper introduces a decentralized electronic bidding system based on blockchain and smart contract. The system uses blockchain to replace the traditional database and uses chaincode to process business logic. In data interaction, encryption techniques such as zero-knowledge proof based on graph isomorphism are used to improve privacy protection, which improves the anonymity of participants, the privacy of data transmission, and the traceability and verifiable of data. Compared with other electronic bidding systems, this system is more secure and efficient, and has the nature of anonymous operation, which fully protects the privacy information in the bidding process.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5307
Author(s):  
Ricardo Borges dos Santos ◽  
Nunzio Marco Torrisi ◽  
Rodrigo Palucci Pantoni

Every consumer’s buying decision at the supermarket influences food brands to make first party claims of sustainability and socially responsible farming methods on their agro-product labels. Fine wines are often subject to counterfeit along the supply chain to the consumer. This paper presents a method for efficient unrestricted publicity to third party certification (TPC) of plant agricultural products, starting at harvest, using smart contracts and blockchain tokens. The method is capable of providing economic incentives to the actors along the supply chain. A proof-of-concept using a modified Ethereum IGR token set of smart contracts using the ERC-1155 standard NFTs was deployed on the Rinkeby test net and evaluated. The main findings include (a) allowing immediate access to TPC by the public for any desired authority by using token smart contracts. (b) Food safety can be enhanced through TPC visible to consumers through mobile application and blockchain technology, thus reducing counterfeiting and green washing. (c) The framework is structured and maintained because participants obtain economical incentives thus leveraging it´s practical usage. In summary, this implementation of TPC broadcasting through tokens can improve transparency and sustainable conscientious consumer behaviour, thus enabling a more trustworthy supply chain transparency.


2021 ◽  
Vol 235 ◽  
pp. 03020
Author(s):  
Qian Liao ◽  
Mimi Shao

Features like the distributed ledger, consensus mechanism, asymmetric encryption technology, smart contract and Token of blockchain can lower transaction cost, enhance trust between customers and merchants, as well as eliminate false payment and consumer information leakage, problems which are common in current payment of cross-border E-Commerce platform. Based on the analysis of existing scholars, this paper studied two payment models: digital cash payment based on blockchain technology and the application of blockchain in third-party payment platform. Then the paper discussed the mechanism of blockchain in cross-border e-commerce payment platform, and creatively proposed a blockchain cross-border e-commerce payment platform, serving as reference and guidance for further development of blockchain technology in cross-border payment.1


Author(s):  
Muhammad Elsayeh ◽  
Kadry Ali Ezzat ◽  
Hany El-Nashar ◽  
Lamia Nabil Omran

The internet of medical things (IoMT) has a great role in improving the health around the world. IoMT is having a great impact in our life in which the clinical data of the patient is observed and checked and then can be transferred to the third party for using in the future such as the cloud. IoMT is a huge data system with a continuous developing rate, which implies that we should keep a lot of data secure. We propose a combined security architecture that fuses the standard architecture and new blockchain technology. Blockchain is a temper digital ledger which gives peer-to-peer communication and provides communication between non-trust individuals. Using standard in-depth strategy and blockchain, we are able to develop a method to collect vital signs data from IoMT and connected devices and use blockchain to store and retrieve the collected data in a secure and decentralized fashion within a closed system, suitable for healthcare providers such as private clinics, hospitals, and healthcare organizations were sharing data with each other is required. Right now initially examine the innovation behind Blockchain then propose IoMT-based security architecture utilizing Blockchain to guarantee the security of information transmission between associated nodes. Experimental analysis shows that the proposed scheme presents a non-significant overhead; yet it brings major advantages to meet the standard security and privacy requirements in IoMT.


2018 ◽  
pp. 2124-2138
Author(s):  
Priya Makarand Shelke ◽  
Rajesh Shardanand Prasad

Over past few years, we are the spectators of the evolution in the field of information technology, telecommunication and networking. Due to the advancement of smart phones, easy and inexpensive access to the internet and popularity of social networking, capture and use of digital images has increased drastically. Image processing techniques are getting developed at rapidly and at the same time easy to use image tampering soft-wares are also getting readily available. If tampered images are misused, big troubles having deep moral, ethical and lawful allegations may arise. Due to high potential of visual media and the ease in their capture, distribution and storage, we rarely find a field where digital visual data is not used. The value of image as evidence of event must be carefully assessed and it is a call for from different fields of applications. Therefore, in this age of fantasy, image authentication has become an issue of utmost importance.


2022 ◽  
pp. 1027-1038
Author(s):  
Arnab Kumar Show ◽  
Abhishek Kumar ◽  
Achintya Singhal ◽  
Gayathri N. ◽  
K. Vengatesan

The autonomous industry has rapidly grown for self-driving cars. The main purpose of autonomous industry is trying to give all types of security, privacy, secured traffic information to the self-driving cars. Blockchain is another newly established secured technology. The main aim of this technology is to provide more secured, convenient online transactions. By using this new technology, the autonomous industry can easily provide more suitable, safe, efficient transportation to the passengers and secured traffic information to the vehicles. This information can easily gather by the roadside units or by the passing vehicles. Also, the economical transactions can be possible more efficiently since blockchain technology allows peer-to-peer communications between nodes, and it also eliminates the need of the third party. This chapter proposes a concept of how the autonomous industry can provide more adequate, proper, and safe transportation with the help of blockchain. It also examines for the possibility that autonomous vehicles can become the future of transportation.


Sign in / Sign up

Export Citation Format

Share Document