scholarly journals Effects of Hybridisation on the Low Velocity Falling Weight Impact and Flexural Properties of Flax-Carbon/Epoxy Hybrid Composites

Fibers ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 95 ◽  
Author(s):  
Matthew Chapman ◽  
Hom Nath Dhakal

The trend of research and adoption of natural plant-based fibre reinforced composites is increasing, with traditional synthetic fibres such as carbon and glass experiencing restrictions placed on their manufacture and use by legislative bodies due to their environmental impact through the entire product life cycle. Finding suitable alternatives to lightweight and high-performance synthetic composites will be of benefit to the automotive, marine and aerospace industries. This paper investigates the low-velocity impact (LVI) and flexural properties and damage characteristics of flax-carbon/epoxy hybrid composites to be used in structural lightweight applications. LVI, for example, is analogous to several real-life situations, such as damage during manufacture, feasibly due to human error such as the dropping of tools and mishandling of the finished product, debris strikes of aircraft flight, or even the collision of a vessel with another. Carbon fibre has been hybridised with flax fibres to achieve enhanced impact and flexural performance. The failure mechanisms of woven flax and flax-carbon epoxy hybrid composites have been further analysed using Scanning Electron Microscopy (SEM). It was observed from the experimental results that carbon fibre hybridisation has a significant effect on the impact and flexural properties and their damage modes. The results obtained from this study exhibited that the flexural strength and modulus of plain flax/epoxy composite increase significantly from 95.66 MPa to 425.87 MPa and 4.78 GPa to 17.90 GPa, respectively, with carbon fibre hybridisation. This significant improvement in flexural properties would provide designers with important information to make informed decisions during material selection for lightweight structural applications.

2017 ◽  
Vol 25 (9) ◽  
pp. 677-682 ◽  
Author(s):  
Faruk Elaldi ◽  
Busra Baykan ◽  
Can Akto

For the last three decades, composites have become very preferable materials to be used in the automotive industry, structural parts of aircraft and military systems and spacecraft, due to their high strength and modulus. Composite materials are sometimes exposed to invisible or visible damage due to impact loading during their service life. In this study, the effect of impactor geometry with four different contact surfaces on woven carbon fibre-reinforced composite plates having three different thicknesses are investigated. In the first stage, composite plates were manufactured with the ply orientations of [45/-45/0/90/45/-45]2s, [45/-45/0/90/45/-45]3s, [45/-45/0/90/45/-45]4s based on conventional usage. In the second stage, carbon fibre-reinforced composite test panels were exposed to low velocity impact tests to obtain force-time, energy-time and force-displacement curves. Finally, semi and full penetration of composite panels and damage magnitude were determined. It was found that the impactor geometries with lower contact surfaces such as conical and ogive types were much more penetrative on composite plates than the other geometries, but they caused larger damage area in the vicinity of the impact point.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 160 ◽  
Author(s):  
Irene García-Moreno ◽  
Miguel Caminero ◽  
Gloria Rodríguez ◽  
Juan López-Cela

Composite structures are particularly vulnerable to impact, which drastically reduces their residual strength, in particular, at high temperatures. The glass-transition temperature (Tg) of a polymer is a critical factor that can modify the mechanical properties of the material, affecting its density, hardness and rigidity. In this work, the influence of thermal ageing on the low-velocity impact resistance and tolerance of composites is investigated by means of compression after impact (CAI) tests. Carbon-fibre-reinforced polymer (CFRP) laminates with a Tg of 195 °C were manufactured and subjected to thermal ageing treatments at 190 and 210 °C for 10 and 20 days. Drop-weight impact tests were carried out to determine the impact response of the different composite laminates. Compression after impact tests were performed in a non-standard CAI device in order to obtain the compression residual strength. Ultrasonic C-scanning of impacted samples were examined to assess the failure mechanisms of the different configurations as a function of temperature. It was observed that damage tolerance decreases as temperature increases. Nevertheless, a post-curing process was found at temperatures below the Tg that enhances the adhesion between matrix and fibres and improves the impact resistance. Finally, the results obtained demonstrate that temperature can cause significant changes to the impact behaviour of composites and must be taken to account when designing for structural applications.


2018 ◽  
Vol 53 (12) ◽  
pp. 1717-1734 ◽  
Author(s):  
M Ravandi ◽  
U Kureemun ◽  
M Banu ◽  
WS Teo ◽  
Liu Tong ◽  
...  

This work investigates the effects of interlayer hybrid fiber dispersion on the impact response of carbon-flax epoxy hybrid laminates at low carbon volume fractions, and benchmarks the mechanical performance enhancement against the non-hybrid flax epoxy. Five hybrid laminate stacking sequences with similar carbon-to-flax weight ratio were fabricated and subjected to low-velocity impact at three different energy values, generating non-perforated and perforated damage states. A virtual drop-weight impact test that models intralaminar failure based on continuum damage mechanics approach, and delamination using cohesive elements, was also implemented to evaluate the material behavior and damage development in the composites. Simulation results were then verified against experimental data. Results suggested that positioning stiffer carbon plies at the impact face does not necessarily lead to enhancement of the hybrid's impact properties. On the contrary, flax plies at the impacted side lead to significant improvement in impact resistance compared to the non-hybrid flax composite with similar thickness. Results of finite element analysis showed that carbon plies play a significant role in the hybrid laminate's energy absorption characteristics due to lower failure strain.


2021 ◽  
Vol 31 (1) ◽  
pp. 57-63
Author(s):  
Vishwas Mahesh ◽  
Ashutosh Nilabh ◽  
Sharnappa Joladarashi ◽  
Satyabodh M. Kulkarni

The present study concentrates on development of conceptual proof for sisal reinforced polymer matrix composite for structural applications subjected to low velocity impact using a finite element (FE) approach. The proposed sisal-epoxy composite of various thicknesses of 3.2 mm, 4 mm and 4.8 mm is subjected to different impact velocities of 1 m/s, 2 m/s and 3 m/s ranging in the low velocity impact regime to study the energy absorbed and damage mitigation behaviour of the proposed composite. The consequence of velocity of impact and thickness of laminate on the sisal epoxy composite’s impact behaviour is assessed statistically using Taguchi’s experimental design. Outcome of the present study discloses that the energy absorption increases with increased impact velocity and laminate thickness. However, the statistical study shows that impact velocity is predominant factor affecting the impact response of sisal epoxy composite laminate compared to laminate thickness. The role of matrix and fiber in damage initiation is studied using Hashin criteria and it is found that matrix failure is predominant over the fiber failure.


2012 ◽  
Vol 488-489 ◽  
pp. 501-505
Author(s):  
Zafarullah Khan

In recent years, for the purpose of achieving enhanced mechanical properties of fiber reinforced composites, hybridized composites containing a combination of two or more types of fiber reinforcements have been explored. Perhaps the main parameter which controls the mechanical properties of the hybrid composites is the flexibility to arrange the hybrid fiber reinforcement layers in a variety of ways within the hybrid laminate. In this study, low velocity drop weight impact resistance of plain weave woven glass and carbon hybrid composites has been investigated. The study explores the effects of intra-ply arrangement sequence on the impact resistance of 24 and 32 ply laminates in which glass and the carbon plies have been differently stacked. The results show that impact resistance of woven glass fiber composites can be enhanced by hybridizing woven glass fabrics with woven carbon fabrics. The results indicate that the impact resistance is a function of the positions of the glass and carbon layers in the hybridized inter ply laminates.


2017 ◽  
Vol 54 (2) ◽  
pp. 286-290 ◽  
Author(s):  
Marina Bunea ◽  
Radu Bosoanca ◽  
Cristian Eni ◽  
Nicoleta Cristache ◽  
Victorita Stefanescu

In this research, the impact behavior of hybrid composite materials subjected to low-velocity impact using the drop-weight installation was investigated. For this study were manufactured eight hybrid materials. All the materials were tested to 90J impact energy. The effect of fabric types used in outer layers on impact performance was studied. The impact characteristics of hybrid materials with G1 glass fabric sheets were compared with those of hybrid materials with G2 glass fabric sheets. The damage surfaces of hybrid laminates were examined by visual investigation. The results obtained showed that the using of G2 glass fabric in structure of hybrid materials improved considerable the impact characteristics.


2021 ◽  
Author(s):  
Davide Mocerino ◽  
Luca Boccarusso ◽  
Dario De Fazio ◽  
Massimo Durante ◽  
Antonio Langella ◽  
...  

The use of composite hybridization using both synthetic and natural fibers, is one of the most established way to combine the advantages of each material that forms the composite system in order to obtain a composite with good in-plane and out-of-plane properties. For example, as pointed out in authors previous research works, considering carbon/hemp hybrid composites, it is possible to combine the ductile behavior and the capacity to absorb energy of hemp fibers with the higher strength and stiffness of carbon allowing the development of a hybrid system with enhanced energy absorption capability, reduced production cost and lower environmental impact respect to traditional carbon fibers composites. The aim of this work is to investigate both experimentally and numerically the mechanical behavior at impact of pure carbon, pure hemp and carbon/hemp hybrid composite laminate. Low velocity impact tests at 10 J and 20 J were carried and non-destructive analyses were performed for each impact energy to evaluate the internal damage extent. The same tests were numerically simulated with LS-DYNA software using shell elements and different material cards (i.e. MAT 54/55, MAT 24 depending on typology of fibers) and contact conditions in order to find the best configuration that matches the experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3078
Author(s):  
Helena Rocha ◽  
Ugo Lafont ◽  
João P. Nunes

Aerospace composites are susceptible to barely visible impact damage (BVID) produced by low-velocity-impact (LVI) events. Fibre Bragg grating (FBG) sensors can detect BVID, but often FBG sensors are embedded in the mid-plan, where residual strains produced by impact damage are lower, leading to an undervaluation of the damage severity. This study compares the residual strains produced by LVI events measured by FBG embedded at the mid-plan and other through-thickness locations of carbon fibre reinforced polymer (CFRP) composites. The instrumented laminates were subjected to multiple low-velocity impacts while the FBG signals were acquired. The FBG sensor measurements allowed not only for the residual strain after damage to be measured, but also for a strain peak at the time of impact to be detected, which is an important feature to identify the nature and presence of BVID in real-life applications. The results allowed an adequate optical fibre (OF) embedding location to be selected for BVID detection. The effect of small- and large-diameter OF on the impact resistance of the CFRP was compared.


2018 ◽  
Vol 11 (4) ◽  
pp. 46-52
Author(s):  
Aidel Kadum Jassim Al-shamary

In this study, the effect of low velocity impact  response of Kevlar/carbon hybrid composite has been investigated. Then the impacted specimens were subjected to compression and buckling tests at room temperature experimentally. The height, width and thickness of the specimens are 150, 100 and 2.1 mm, respectively. Impact tests have been performed under different impact energy levels by using low velocity impact testing machine. Compression and buckling tests were conducted by Shimadzu testing machine. According to obtained results, the damage increases by increasing the impact energy level in the subjected specimens to impact test.  Compression strength value is higher about 3  times than buckling strength value.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1026 ◽  
Author(s):  
Hao Li ◽  
Jingbiao Liu ◽  
Zhenqing Wang ◽  
Zhengwei Yu ◽  
Yanfei Liu ◽  
...  

Polymer composites are sensitive to impact loading due to their low impact resistance. Shape memory alloy (SMA) wires have been used to improve the impact resistance of the polymer composite materials because of their unique superelasticity performance. In this study, a new SMA hybrid basalt fiber-reinforced polymer composite embedded with two perpendicular layers of superelastic SMA wires is designed and the low-velocity impact behavior is experimental investigated. For contrast, the conventional polymer composite without SMA wires is also tested as the reference laminate. The tests are carried out at three different impact energy levels (30, 60 and 90 J). Moreover, to find out indications for manufacturing of SMA hybrid composites with high impact resistance, four different SMA wires embedded modes are investigated. Visual inspection and scanning electron microscope methods are adopted to identify the damage modes of the impacted samples. Results show that the impact resistance of the hybrid laminates is improved due to the hybridization of SMA wires. The most effective impact resistance of the SMA hybrid composites can be obtained by incorporating the SMA wires with one layer between the front two plies and another layer between the bottom two plies into the composite structure.


Sign in / Sign up

Export Citation Format

Share Document