scholarly journals Numerical Investigation of the Effect of Sloped Terrain on Wind-Driven Surface Fire and Its Impact on Idealized Structures

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 94
Author(s):  
Ali Edalati-nejad ◽  
Maryam Ghodrat ◽  
Albert Simeoni

In this study, a time-dependent investigation has been conducted to numerically analyze the impact of wind-driven surface fire on an obstacle located on sloped terrain downstream of the fire source. Inclined field with different upslope terrain angles of 0, 10, 20, and 30° at various wind-velocities have been simulated by FireFoam, which is a large eddy simulation (LES) solver of the OpenFOAM platform. The numerical data have been validated using the aerodynamic measurements of a full-scale building model in the absence of fire effects. The results underlined the physical phenomena contributing to the impact of varying wind flow and terrain slope near the fire bed on a built area. The findings indicated that under a constant heat release rate and upstream wind velocity, increasing the upslope terrain angle leads to an increase in the higher temperature areas on the ground near the building. It is also found that raising the inclined terrain slope angle from 0 to 30°, results in an increase in the integrated temperature on the surface of the building. Furthermore, by raising the terrain slope from 0 to 30°, the integrated temperature on the ground for the mentioned cases increases by 16%, 10%, and 13%, respectively.

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Mohsen Ghaderi ◽  
Maryam Ghodrat ◽  
Jason J. Sharples

This paper presents a numerical investigation of the impact of a wind-driven surface fire, comparable to a large wildfire, on an obstacle located downstream of the fire source. The numerical modelling was conducted using FireFOAM, a coupled fire-atmosphere model underpinned by a large eddy simulation (LES) solver, which is based on the Eddy Dissipation Concept (EDC) combustion model and implemented in the OpenFOAM platform (an open source CFD tool). The numerical data were validated using the aerodynamic measurements of a full-scale building model in the absence of fire effects. The results highlighted the physical phenomena contributing to the fire spread pattern and its thermal impact on the building. In addition, frequency analysis of the surface temperature fluctuations ahead of the fire front showed that the presence of a building influences the growth and formation of buoyant instabilities, which directly affect the behaviour of the fire’s plume. The coupled fire-atmosphere modelling presented here constitutes a fundamental step towards better understanding the behaviour and potential impacts of large wind-driven wildland fires in wildland-urban interface (WUI) areas.


1983 ◽  
Vol 13 (4) ◽  
pp. 620-625 ◽  
Author(s):  
James G. Wyant ◽  
Richard D. Laven ◽  
Philip N. Omi

The impact of fire damage on the shoot growth potential of 36 branches on each of nine ponderosa pine (Pinusponderosa Laws.) trees was evaluated after a fall season prescribed surface fire. In the first season after burning, mean fascicle lengths and bud sizes (length and diameter) were greater on trees which received underburning treatment than on unburned trees. No treatment effect was observed on shoot lengths, needle numbers, or fascicle numbers, characters determined in the season of bud formation.


Author(s):  
Nicholas Goodman ◽  
Brian J Leege ◽  
Peter E Johnson

Exposing students to hands-on experiments has been a common approach to illustrating complex physical phenomena that have been otherwise modelled solely mathematically. Compressible, isentropic flow in a duct is an example of such a phenomenon, and it is often demonstrated via a de Laval nozzle experiment. We have improved an existing converging/diverging nozzle experiment so that students can modify the location of the normal shock that develops in the diverging portion to better understand the relationship between the shock and the pressure. We have also improved the data acquisition system for this experiment and explained how visualisation of the standing shock is now possible. The results of the updated system demonstrate that the accuracy of the isentropic flow characteristics has not been lost. Through pre- and post-laboratory quizzes, we show the impact on student learning as well.


2012 ◽  
Vol 69 (12) ◽  
pp. 3633-3651 ◽  
Author(s):  
Qingfang Jiang ◽  
Shouping Wang

Abstract The impact of gravity waves on marine stratocumulus is investigated using a large-eddy simulation model initialized with sounding profiles composited from the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-Rex) aircraft measurements and forced by convergence or divergence that mimics mesoscale diurnal, semidiurnal, and quarter-diurnal waves. These simulations suggest that wave-induced vertical motion can dramatically modify the cloud albedo and morphology through nonlinear cloud–aerosol–precipitation–circulation–turbulence feedback. In general, wave-induced ascent tends to increase the liquid water path (LWP) and the cloud albedo. With a proper aerosol number concentration, the increase in the LWP leads to enhanced precipitation, which triggers or strengthens mesoscale circulations in the boundary layer and accelerates cloud cellularization. Precipitation also tends to create a decoupling structure by weakening the turbulence in the subcloud layer. Wave-induced descent decreases the cloud albedo by dissipating clouds and forcing a transition from overcast to scattered clouds or from closed to open cells. The overall effect of gravity waves on the cloud variability and morphology depends on the cloud property, aerosol concentration, and wave characteristics. In several simulations, a transition from closed to open cells occurs under the influence of gravity waves, implying that some of the pockets of clouds (POCs) observed over open oceans may be related to gravity wave activities.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 27
Author(s):  
Maryam Ghodrat ◽  
Farshad Shakeriaski ◽  
David James Nelson ◽  
Albert Simeoni

This work provides a detailed overview of existing investigations into the fire–wind interaction phenomena. Specifically, it considers: the fanning effect of wind, wind direction and slope angle, and the impact of wind on fire modelling, and the relevant analysis (numerical and experimental) techniques are evaluated. Recently, the impact of fire on buildings has been widely analysed. Most studies paid attention to fire damage evaluation of structures as well as structure fire safety engineering, while the disturbance interactions that influence structures have been neglected in prior studies and must be analysed in greater detail. In this review article, evidence regarding the fire–wind interaction is discussed. The effect of a fire transitioning from a wildfire to a wildland–urban interface (WUI) is also investigated, with a focus on the impact of the resulting fire–wind phenomenon on high- and low-rise buildings.


2021 ◽  
Author(s):  
Jihang Li ◽  
Hyunguk Kwon ◽  
Drue Seksinsky ◽  
Daniel Doleiden ◽  
Jacqueline O’Connor ◽  
...  

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot gases as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot flame efficacy increases with pilot flame equivalence ratio until it matches the main flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.


2018 ◽  
Vol 203 ◽  
pp. 07005 ◽  
Author(s):  
Abdurrasheed Sa'id Abdurrasheed ◽  
Khamaruzaman Wan Yusof ◽  
Husna Bt Takaijudin ◽  
Aminuddin Ab. Ghani ◽  
Muhammad Mujahid Muhammad ◽  
...  

Subsurface drainage modules are important components of the Bio-ecological Drainage System (BIOECODS) which is a system designed to manage stormwater quantity and quality using constructed grass swales, subsurface modules, dry and wet ponds. BIOECODS is gradually gaining attention as one of the most ecologically sustainable solutions to the frequent flash floods in Malaysia and the rest of the world with a focus on the impact of the subsurface modules to the effectiveness of the system. Nearly two decades of post-construction research in the BIOECODS technology, there is need to review findings and areas of improvement in the system. Thus, this study highlighted the key advances and challenges in these subsurface drainage modules through an extensive review of related literature. From the study, more work is required on the hydraulic characteristics, flow attenuation and direct validation methods between field, laboratory, and numerical data. Also, there is concern over the loss of efficiency during the design life especially the infiltration capacity of the module, the state of the geotextile and hydronet over time. It is recommended for the sake of higher performance, that there should be an onsite methodology to assess the permeability, rate of clogging and condition of the geotextile as well as the hydronet over time.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3009
Author(s):  
Andrius Grigas ◽  
Aurelija Kemzūraitė ◽  
Dainius Steponavičius ◽  
Aušra Steponavičienė ◽  
Rolandas Domeika

Application of hydroponic systems in feed production has not been extensively studied. Therefore, there is insufficient data on the effect of the slope of hydroponic growing trays used in the nutrient film technique on wheat fodder yield and its qualitative parameters. The slope of the trays has only been studied for food crops. This study conducted experimental research using a nutrient film technique hydroponic fodder growing device to evaluate the impact of growing tray slope angle on hydroponic wheat fodder production. The slope angle of the growing trays was changed from 2.0% (1.15°) to 8.0% (4.57°) with increments of 1.5% (0.86°). This research used two different light sources for wheat sprout illumination: indoor lighting (fluorescent lamps) and light-emitting diode illumination. In addition, two nutrient solutions were used for sprout irrigation: tap water and a solution enriched with macro- and microelements. Experimental studies confirmed the hypothesis that the slope angle of growing trays significantly affects the yield of wheat fodder grown for seven days. Analyzing the results, we found that the highest yield of wheat fodder after seven days of cultivation was achieved with growing trays sloped by 6.5% and using indoor lighting. In addition, we achieved the highest wheat fodder dry matter content using a 6.5% slope angle. Experimental studies also confirmed the hypothesis that using macro- and micronutrients in the nutrient solution does not significantly affect the yield of wheat fodder grown hydroponically for seven days.


Author(s):  
Mehdi Elhimer ◽  
Aboulghit El Malki Alaoui ◽  
Kilian Croci ◽  
Céline Gabillet ◽  
Nicolas Jacques

The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution of the impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture.


2019 ◽  
Vol 40 (2) ◽  
pp. 138-150 ◽  
Author(s):  
Vanessa C. Villaluz ◽  
Ma. Regina M. Hechanova

Purpose The purpose of this paper is to test a culture-building model, CREATE, highlighting the central role of leadership in shaping the predictors of innovation culture. The authors hypothesize that leadership directly predicts innovation culture, as well, as indirectly impacts innovation culture through mediating variables. Also, the authors examine the impact of leadership on innovation by ownership type. Design/methodology/approach A total 631 survey responses were collected from employees of sole proprietorship, family-owned corporations, and non-family corporations. Parallel multiple mediator models were used to test the hypothesized relationships of the variables. Findings The findings show that a leadership variable, role modeling, and support for innovation, directly and indirectly predicts an innovation culture. However, it appears that in sole proprietorship and family-owned corporations, leaders impact on innovation culture are through mediating variables, while in non-family corporations, leaders influence innovation through strategy, evaluation, and rewards. Originality/value The study shows that the culture-building model, CREATE, can be used as a framework for building an innovation culture in organizations. The study also showed that leaders among sole proprietorships, family-owned corporations, and non-family corporations may need to employ different approaches in building an innovation culture in their organizations.


Sign in / Sign up

Export Citation Format

Share Document