scholarly journals Design and Fabrication of an Automatic Fish Feeder Prototype Suits Tilapia Tanks

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 74
Author(s):  
Ahmed Mohamed El Shal ◽  
Faisal Mohamed El Sheikh ◽  
Atef Mohamed Elsbaay

The conventional methods of supplying feed to tilapia tanks are ineffective. It is better to find new a automatic feeder saving pellets from crushing and cohesion without hitting pellets during feeding at a predetermined interval of time and an accurate amount of food with a larger surface area covered by pellets. Developing-country fish farmers use manual feeding to be more cost-effective than with costly mechanized feeding, so this research aimed to design and construct an automatic fish feeder prototype to feed tilapia in a recirculation aquaculture system’s tank. The performance of the prototype was studied after it was designed and installed. The dispensed feed operated by a DC motor located underneath the pellet hopper and the feed material was discharged into the tank through a gate in the bottom of the feeder. Three pellet sizes, three rotation speeds, and three feeder heights from the water’s surface were used to test the automatic feeder’s efficiency. The results showed that the optimal speed for the automatic feeder was 14 rpm with a height of 70 cm, resulting in a distribution width of 26.6 cm and a high automatic feeder efficiency of 99.9%. Furthermore, the feeder used very little electricity and saved time, cost, labor, energy, and pellets.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ali Q. Alorabi

In this work, magnetized activated Juniperus procera leaves (Fe3O4@AJPL) were successfully prepared via chemical activation of JPL and in situ coprecipitation with Fe3O4. A Fe3O4@AJPL nanocomposite was successfully applied for the elimination of malachite green (MG) dye from aqueous media. The prepared Fe3O4@AJPL adsorbent was characterized by SEM, EDX, TEM, XRD, FTIR, TGA, and BET surface area analyses. The BET surface area and pore size of the Fe3O4@AJPL nanocomposite were found to be 38.44 m2/g and 10.6 nm, respectively. The XRD and FTIR results indicated the formation of a Fe3O4@AJPL nanocomposite. Different parameters, such as pH of the solution (3–8), adsorbent dosage (10–100 mg), temperature (25–45°C), contact time (5-240 min), and initial MG concentrations (20–350 mg/L), for the elimination of the MG dye using Fe3O4@AJPL were optimized and found to be 7, 50 mg, 45°C, 120 min, and 150 mg/L, respectively. The nonlinear isotherm and kinetic studies exhibited a better fitting to second-order kinetic and Langmuir isotherm models, with a maximum monolayer adsorption capacity of 318.3 mg/g at 45°C, which was highly superior to the previously reported magnetic nanocomposite adsorbents. EDX analyses confirmed the presence of nitrogen on the Fe3O4@AJPL surface after MG adsorption. The calculated thermodynamic factors indicated endothermic and spontaneous processes. The desorption of MG dye from Fe3O4@AJPL was performed using a solution of 90% ethanol. Finally, it could be concluded that the designed Fe3O4@AJPL magnetic nanocomposite will be a cost-effective and promising adsorbent for the elimination of MG from aqueous media.


Author(s):  
Amira Masri ◽  
Hanan Hamamy

AbstractThis retrospective study was aiming to determine the cost effectiveness of whole exome sequencing (WES) in the diagnosis of children with developmental delay in a developing country. In this study of 40 patients, the average cost of traditional investigations and indirect costs related to rehabilitation and medications per child were USD847 and 6,585 per year, respectively. With a current cost for WES of approximately USD1,200, we concluded that performing WES could be cost effective, even in countries with limited resources, as it provides the option for genetic counseling in affected families with an ultimate reduction of overall financial burden to both parents and health care system.


2021 ◽  
Vol 27 (4) ◽  
pp. 1-7
Author(s):  
Mariana Y Miyamoto ◽  
Ralph Cohen ◽  
Niro Kasahara

Background/Aims The appropriate roles for alternative diagnostic tests in detecting primary angle closure of the eye are uncertain. This study evaluated the cost-effectiveness of Scheimpflug camera imaging, the van Herick technique and gonioscopy to identify primary angle in a developing country. Methods This cross-sectional diagnostic study included participants aged >40 years with suspected primary angle closure in the developing country of Brazil. All participants underwent Scheimpflug camera imaging, a van Herick test and gonioscopy. The diagnostic ability of these tests was evaluated using a receiver operating characteristic curve. Costs of interventions were derived using the Brazilian Hierarchical Classification of Medical Procedures. The cost-effectiveness of the tests were compared using an incremental cost-effectiveness ratio. Results Gonioscopy was confirmed to be the most accurate diagnostic test for primary angle closure, closely followed by the van Herick test. The accuracy of Scheimpflug camera imaging was considerably lower, largely because of its low sensitivity. The incremental cost-effectiveness ratio demonstrated that Scheimpflug camera imaging was also the least cost-effective, as it was considerably more expensive but with less clinical benefits. Conclusions Because of its relatively low accuracy and high costs, Scheimpflug camera imaging is not as cost-effective as gonioscopy nor the van Herick test as a means of diagnosing primary angle closure in a developing country.


2012 ◽  
Vol 15 (3) ◽  
pp. 589-596 ◽  
Author(s):  
K. Stojecki ◽  
J. Karamon ◽  
J. Sroka ◽  
T. Cencek

Abstract Protozoa of the genus Sarcocystis (phylum Apicomplexa, family Sarcocystidae) is one of the most common parasites affecting animals. Interspecies diagnostic of Sarcocystis genus was based on electron microscopy for many years. Because of absence of visible differences between species with reachable magnifications, light microscopy is useless. In many cases serological diagnostic method have lack of sensitivity. A variety of molecular methods have been developed and used to detect and identify Sarcocystis spp. and to assess the genetic diversity among this protozoan from different population/hosts. Nowadays, molecular diagnostic is the common, time/cost effective method used all over the world to interspecies differentiation.


2019 ◽  
Vol 7 (10) ◽  
pp. 5324-5332 ◽  
Author(s):  
Mao Wu ◽  
Yansheng Gong ◽  
Tao Nie ◽  
Jin Zhang ◽  
Rui Wang ◽  
...  

Nanocage-like 3D porous graphitic carbon nitride (g-C3N4) with a high surface area and nitrogen defects was successfully prepared via a novel, template-free, cost-effective and hydrothermal-copolymerization route.


2015 ◽  
Vol 148 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Jean J. Turgeon ◽  
Jeffrey G. Fidgen ◽  
Krista L. Ryall ◽  
Taylor A. Scarr

AbstractAgrilus planipennis (Coleoptera: Buprestidae), is causing extensive mortality of ash (Fraxinus Linnaeus; Oleaceae) in North America. Once detected in an area, resource managers require methods to obtain estimates that could improve management decisions. We studied the within-crown and within-branch distribution and abundance of A. planipennis feeding galleries by sampling 3-m-long branches from asymptomatic urban ash trees and subdividing each branch into 12 sections of 25 cm each. We found galleries in all 12 sections of some, but not all, branches. Section was a significant source of variation in A. planipennis gallery density/m2 of branch surface area. A comparison of predictive power and efficiency of estimates for samples of increasing length, and for samples of the same length but consisting of different combinations of sections, revealed that those based on the two basal 25-cm sections of a branch from the lower-crown or mid-crown of an asymptomatic tree were less accurate and precise than those based on more sections, but were the most cost effective. Whittling more sections per branch, irrespective of the combinations of branch sections per length, improved predictive power but reduced cost effectiveness. We also observed that crown level was not important, and aspect was only marginally so, when estimating gallery abundance per sampled branch.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Vladimir Popov ◽  
Ivaylo Hinkov ◽  
Svetlomir Diankov ◽  
Maria Karsheva ◽  
Yordan Handzhiyski

AbstractThe antimicrobial activity of nanoparticles (NPs) depends of the surface area in contact with microorganisms. The large surface area of the nanoparticles enhances their interaction with the microbes. In this work, a green, simple, rapid, and efficient ultrasound-assisted reduction method for silver nanoparticles (AgNP) synthesis is presented. For the synthesis, an aqueous solution of silver nitrate, ethanol, and ammonia was used. The adopted method can be easily implemented for any kind of scientific or industrial application due to its cost-effective nature. The effect of sonication time on the nanoparticle formation was investigated. Silver nanoparticles were analyzed through transmission electron microscopy and UV-vis spectroscopy. Antimicrobial additives can be incorporated in mass in different matrixes (polymeric or cellulosic), which is a convenient methodology to achieve antimicrobial activity. In this work, silver nanoparticles were incorporated in cellulose using an ultrasonic bath technique. The most important aspect of cellulose containing silver nanoparticles prepared by this method is its high antimicrobial efficiency. The microbiological study was carried out by a standard agar technique. The analysis showed that cellulose with incorporated silver nanoparticles exhibited strong antimicrobial activity against


Sign in / Sign up

Export Citation Format

Share Document