scholarly journals Role of Surface-Layer Coherent Eddies in Potential Vorticity Transport in Quasigeostrophic Turbulence Driven by Eastward Shear

Fluids ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Wenda Zhang ◽  
Christopher L. P. Wolfe ◽  
Ryan Abernathey

The transport by materially coherent surface-layer eddies was studied in a two-layer quasigeostrophic model driven by eastward mean shear. The coherent eddies were identified by closed contours of the Lagrangian-averaged vorticity deviation obtained from Lagrangian particles advected by the flow. Attention was restricted to eastward mean flows, but a wide range of flow regimes with different bottom friction strengths, layer thickness ratios, and background potential vorticity (PV) gradients were otherwise considered. It was found that coherent eddies become more prevalent and longer-lasting as the strength of bottom drag increases and the stratification becomes more surface-intensified. The number of coherent eddies is minimal when the shear-induced PV gradient is 10–20 times the planetary PV gradient and increases for both larger and smaller values of the planetary PV gradient. These coherent eddies, with an average core radius close to the deformation radius, propagate meridionally with a preference for cyclones to propagate poleward and anticyclones to propagate equatorward. The meridional propagation preference of the coherent eddies gives rise to a systematic upgradient PV transport, which is in the opposite direction as the background PV transport and not captured by standard Lagrangian diffusivity estimates. The upgradient PV transport by coherent eddy cores is less than 15% of the total PV transport, but the PV transport by the periphery flow induced by the PV inside coherent eddies is significant and downgradient. These results clarify the distinct roles of the trapping and stirring effect of coherent eddies in PV transport in geophysical turbulence.

2007 ◽  
Vol 64 (3) ◽  
pp. 695-710 ◽  
Author(s):  
H. de Vries ◽  
J. D. Opsteegh

Abstract Optimal perturbations are constructed for a two-layer β-plane extension of the Eady model. The surface and interior dynamics is interpreted using the concept of potential vorticity building blocks (PVBs), which are zonally wavelike, vertically confined sheets of quasigeostrophic potential vorticity. The results are compared with the Charney model and with the two-layer Eady model without β. The authors focus particularly on the role of the different growth mechanisms in the optimal perturbation evolution. The optimal perturbations are constructed allowing only one PVB, three PVBs, and finally a discrete equivalent of a continuum of PVBs to be present initially. On the f plane only the PVB at the surface and at the tropopause can be amplified. In the presence of β, however, PVBs influence each other’s growth and propagation at all levels. Compared to the two-layer f-plane model, the inclusion of β slightly reduces the surface growth and propagation speed of all optimal perturbations. Responsible for the reduction are the interior PVBs, which are excited by the initial PVB after initialization. Their joint effect is almost as strong as the effect from the excited tropopause PVB, which is also negative at the surface. If the optimal perturbation is composed of more than one PVB, the Orr mechanism dominates the initial amplification in the entire troposphere. At low levels, the interaction between the surface PVB and the interior tropospheric PVBs (in particular those near the critical level) takes over after about half a day, whereas the interaction between the tropopause PVB and the interior PVBs is responsible for the main amplification in the upper troposphere. In all cases in which more than one PVB is used, the growing normal mode configuration is not reached at optimization time.


Author(s):  
C Dawes

Nitrotec is characterized as a low-distortion treatment for ferrous materials where surface enrichment, predominantly by nitrogen, forms a hard surface layer of epsilon iron nitride, beneath which there is a nitrogen diffusion zone. The surface layer imparts wear and corrosion resistance and the diffusion zone increases the yield and fatigue strength, particularly in thin section sizes. Process developments have significantly enhanced the corrosion resistance and aesthetic appearance of treated components to make Nitrotec competitive with electroplated finishes. Major commercialization took place during the 1980s with a wide range of successful applications from windscreen wiper systems to bumper armatures, using combinations of the unique properties obtainable from the process to provide cost and weight savings.


2021 ◽  
Vol 51 (1) ◽  
pp. 207-228
Author(s):  
Aviv Solodoch ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractLong-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low , but for moderate values () partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher , eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.


2013 ◽  
Vol 70 (8) ◽  
pp. 2629-2649 ◽  
Author(s):  
Ludivine Oruba ◽  
Guillaume Lapeyre ◽  
Gwendal Rivière

Abstract The motion of surface depressions evolving in a background meandering baroclinic jet is investigated using a two-layer quasigeostrophic model on a beta plane. Synoptic-scale finite-amplitude cyclones are initialized in the lower and upper layer to the south of the jet in a configuration favorable to their baroclinic interaction. The lower-layer cyclone is shown to move across the jet axis from its warm-air to cold-air side. It is the presence of a poleward-oriented barotropic potential vorticity (PV) gradient that makes possible the cross-jet motion through the beta-drift mechanism generalized to a baroclinic atmospheric context. The potential vorticity gradient associated with the jet is responsible for the dispersion of Rossby waves by the cyclones and the development of an anticyclonic anomaly in the upper layer. This anticyclone forms a PV dipole with the upper-layer cyclone that nonlinearly advects the lower-layer cyclone across the jet. In addition, the background deformation is shown to modulate the cross-jet advection. Cyclones evolving in a deformation-dominated environment (south of troughs) are strongly stretched while those evolving in a rotation-dominated environment (south of ridges) remain quasi isotropic. It is shown that the more stretched cyclones trigger a more efficient dispersion of energy, create a stronger upper-layer anticyclone, and move perpendicularly to the jet faster than the less stretched ones. Both the intensity and location of the upper-layer anticyclone explain the distinct cross-jet speeds. A statistical study consisting in initializing cyclones at different locations south of the jet core confirms that the cross-jet motion is faster for the more meridionally elongated cyclones evolving in areas of strongest barotropic PV gradient.


2009 ◽  
Vol 66 (2) ◽  
pp. 450-467 ◽  
Author(s):  
Ross Tulloch ◽  
K. Shafer Smith

Abstract The horizontal wavenumber spectra of wind and temperature near the tropopause have a steep −3 slope at synoptic scales and a shallower −5/3 slope at mesoscales, with a transition between the two regimes at a wavelength of about 450 km. Here it is demonstrated that a quasigeostrophic model driven by baroclinic instability exhibits such a transition near its upper boundary (analogous to the tropopause) when surface temperature advection at that boundary is properly resolved and forced. To accurately represent surface advection at the upper and lower boundaries, the vertical structure of the model streamfunction is decomposed into four parts, representing the interior flow with the first two neutral modes, and each surface with its Green’s function solution, resulting in a system with four prognostic equations. Mean temperature gradients are applied at each surface, and a mean potential vorticity gradient consisting both of β and vertical shear is applied in the interior. The system exhibits three fundamental types of baroclinic instability: interactions between the upper and lower surfaces (Eady type), interactions between one surface and the interior (Charney type), and interactions between the barotropic and baroclinic interior modes (Phillips type). The turbulent steady states that result from each of these instabilities are distinct, and those of the former two types yield shallow kinetic energy spectra at small scales along those boundaries where mean temperature gradients are present. When both mean interior and surface gradients are present, the surface spectrum reflects a superposition of the interior-dominated −3 slope cascade at large scales, and the surface-dominated −5/3 slope cascade at small scales. The transition wavenumber depends linearly on the ratio of the interior potential vorticity gradient to the surface temperature gradient, and scales with the inverse of the deformation scale when β = 0.


2005 ◽  
Vol 62 (11) ◽  
pp. 4043-4056 ◽  
Author(s):  
Li Dong ◽  
Stephen J. Colucci

Abstract The relative importance of interactions between deformation and potential vorticity (PV) as a block-onset mechanism is examined in 30 cases of atmospheric blocking over the Southern Hemisphere (SH). The blocking cases are diagnosed with a quasigeostrophic model for the u component of the geostrophic wind tendency. In this model, two mechanisms, the advection of the meridional gradient of PV and interactions between deformation and PV, can force the weakening of westerly flow or increasing easterly flow associated with blocking. The first forcing mechanism, which does not directly include deformation, indicates that the advection of equatorward increasing cyclonic PV (or equatorward decreasing anticyclonic PV) could force a local weakening of geostrophic westerlies or increasing easterlies. The second forcing mechanism, which represents the net effect of interactions between deformation and PV, indicates that eastward increasing PV embedded in a cyclonically sheared flow or equatorward increasing PV coincident with a stretching (diffluent) flow could each force a weakening in the westerlies. While deformation is a distinct signature of blocking, it may not always actively participate in the formation of blocking. Advection and interaction contributions generally opposed each other in both the diagnosed blocking and nonblocking cases. Weakening westerlies associated with block onset would occur when one effect (usually the advection effect) contributes more negatively to the wind tendency than the opposing, positive contribution from the other effect. When deformation is actively involved in the formation of blocking, self-interactions between synoptic-scale PV and deformation and self-interactions between planetary-scale PV and deformation contribute more importantly than synoptic-to-planetary-scale interactions between PV and deformation fields to the weakening of westerlies associated with block onsets.


2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


2018 ◽  
Vol 7 (2) ◽  
pp. 117-128 ◽  
Author(s):  
Erin Sullivan ◽  
Marie Louise Herzfeld-Schild

This introduction surveys the rise of the history of emotions as a field and the role of the arts in such developments. Reflecting on the foundational role of the arts in the early emotion-oriented histories of Johan Huizinga and Jacob Burkhardt, as well as the concerns about methodological impressionism that have sometimes arisen in response to such studies, the introduction considers how intensive engagements with the arts can open up new insights into past emotions while still being historically and theoretically rigorous. Drawing on a wide range of emotionally charged art works from different times and places—including the novels of Carson McCullers and Harriet Beecher-Stowe, the private poetry of neo-Confucian Chinese civil servants, the photojournalism of twentieth-century war correspondents, and music from Igor Stravinsky to the Beatles—the introduction proposes five ways in which art in all its forms contributes to emotional life and consequently to emotional histories: first, by incubating deep emotional experiences that contribute to formations of identity; second, by acting as a place for the expression of private or deviant emotions; third, by functioning as a barometer of wider cultural and attitudinal change; fourth, by serving as an engine of momentous historical change; and fifth, by working as a tool for emotional connection across communities, both within specific time periods but also across them. The introduction finishes by outlining how the special issue's five articles and review section address each of these categories, while also illustrating new methodological possibilities for the field.


Author(s):  
C. Claire Thomson

The first book-length study in English of a national corpus of state-sponsored informational film, this book traces how Danish shorts on topics including social welfare, industry, art and architecture were commissioned, funded, produced and reviewed from the inter-war period to the 1960s. For three decades, state-sponsored short filmmaking educated Danish citizens, promoted Denmark to the world, and shaped the careers of renowned directors like Carl Th. Dreyer. Examining the life cycle of a representative selection of films, and discussing their preservation and mediation in the digital age, this book presents a detailed case study of how informational cinema is shaped by, and indeed shapes, its cultural, political and technological contexts.The book combines close textual analysis of a broad range of films with detailed accounts of their commissioning, production, distribution and reception in Denmark and abroad, drawing on Actor-Network Theory to emphasise the role of a wide range of entities in these processes. It considers a broad range of genres and sub-genres, including industrial process films, public information films, art films, the city symphony, the essay film, and many more. It also maps international networks of informational and documentary films in the post-war period, and explores the role of informational film in Danish cultural and political history.


2020 ◽  
pp. 102-109
Author(s):  
Svetlana Alekseevna Raschetina ◽  

Relevance and problem statement. Modern unstable society is characterized by narrowing the boundaries of controlled socialization and expanding the boundaries of spontaneous socialization of a teenager based on his immersion in the question arises about the importance of the family in the process of socialization of a teenager in the conditions of expanding the space of socialization. There is a need to study the role of the family in this process, to search, develop and test research methods that allow us to reveal the phenomenon of socialization from the side of its value characteristics. The purpose and methodology of the study: to identify the possibilities of a systematic and anthropological methodology for studying the role of the family in the process of socialization of adolescents in modern conditions, testing research methods: photo research on the topic “Ego – I” (author of the German sociologist H. Abels), profile update reflexive processes (by S. A. Raschetina). Materials and results of the study. The study showed that for all the problems that exist in the family of the perestroika era and in the modern family, it acts for a teenager as a value and the first (main) support in the processes of socialization. The positions well known in psychology about the importance of interpersonal relations in adolescence for the formation of attitudes towards oneself as the basis of socialization are confirmed. Today, the frontiers of making friends have expanded enormously on the basis of Internet communication. The types of activities of interest to a teenager (traditional and new ones related to digitalization) are the third pillar of socialization. Conclusion. The “Ego – I” method of photo research has a wide range of possibilities for quantitative and qualitative analysis of the socialization process to identify the value Pillars of this process.


Sign in / Sign up

Export Citation Format

Share Document