Formation of Anticyclones above Topographic Depressions

2021 ◽  
Vol 51 (1) ◽  
pp. 207-228
Author(s):  
Aviv Solodoch ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractLong-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low , but for moderate values () partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher , eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.

Fluids ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Wenda Zhang ◽  
Christopher L. P. Wolfe ◽  
Ryan Abernathey

The transport by materially coherent surface-layer eddies was studied in a two-layer quasigeostrophic model driven by eastward mean shear. The coherent eddies were identified by closed contours of the Lagrangian-averaged vorticity deviation obtained from Lagrangian particles advected by the flow. Attention was restricted to eastward mean flows, but a wide range of flow regimes with different bottom friction strengths, layer thickness ratios, and background potential vorticity (PV) gradients were otherwise considered. It was found that coherent eddies become more prevalent and longer-lasting as the strength of bottom drag increases and the stratification becomes more surface-intensified. The number of coherent eddies is minimal when the shear-induced PV gradient is 10–20 times the planetary PV gradient and increases for both larger and smaller values of the planetary PV gradient. These coherent eddies, with an average core radius close to the deformation radius, propagate meridionally with a preference for cyclones to propagate poleward and anticyclones to propagate equatorward. The meridional propagation preference of the coherent eddies gives rise to a systematic upgradient PV transport, which is in the opposite direction as the background PV transport and not captured by standard Lagrangian diffusivity estimates. The upgradient PV transport by coherent eddy cores is less than 15% of the total PV transport, but the PV transport by the periphery flow induced by the PV inside coherent eddies is significant and downgradient. These results clarify the distinct roles of the trapping and stirring effect of coherent eddies in PV transport in geophysical turbulence.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


2007 ◽  
Vol 64 (3) ◽  
pp. 695-710 ◽  
Author(s):  
H. de Vries ◽  
J. D. Opsteegh

Abstract Optimal perturbations are constructed for a two-layer β-plane extension of the Eady model. The surface and interior dynamics is interpreted using the concept of potential vorticity building blocks (PVBs), which are zonally wavelike, vertically confined sheets of quasigeostrophic potential vorticity. The results are compared with the Charney model and with the two-layer Eady model without β. The authors focus particularly on the role of the different growth mechanisms in the optimal perturbation evolution. The optimal perturbations are constructed allowing only one PVB, three PVBs, and finally a discrete equivalent of a continuum of PVBs to be present initially. On the f plane only the PVB at the surface and at the tropopause can be amplified. In the presence of β, however, PVBs influence each other’s growth and propagation at all levels. Compared to the two-layer f-plane model, the inclusion of β slightly reduces the surface growth and propagation speed of all optimal perturbations. Responsible for the reduction are the interior PVBs, which are excited by the initial PVB after initialization. Their joint effect is almost as strong as the effect from the excited tropopause PVB, which is also negative at the surface. If the optimal perturbation is composed of more than one PVB, the Orr mechanism dominates the initial amplification in the entire troposphere. At low levels, the interaction between the surface PVB and the interior tropospheric PVBs (in particular those near the critical level) takes over after about half a day, whereas the interaction between the tropopause PVB and the interior PVBs is responsible for the main amplification in the upper troposphere. In all cases in which more than one PVB is used, the growing normal mode configuration is not reached at optimization time.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


2021 ◽  
Vol 263 (6) ◽  
pp. 965-969
Author(s):  
Tyrode Victor ◽  
Nicolas Totaro ◽  
Laurent Maxit ◽  
Alain Le Bot

In Statistical Energy Analysis (SEA) and more generally in all statistical theories of sound and vibration, the establishment of diffuse field in subsystems is one of the most important assumption. Diffuse field is a special state of vibration for which the vibrational energy is homogeneously and isotropically distributed. For subsystems excited with a random white noise, the vibration tends to become diffuse when the number of modes is large and the damping sufficiently light. However even under these conditions, the so-called coherent backscattering enhancement (CBE) observed for certain symmetric subsystems may impede diffusivity. In this study, CBE is observed numerically and experimentally for various geometries of subsystem. Also, it is shown that asymmetric boundary conditions leads to reduce or even vanish the CBE. Theoretical and numerical simulations with the ray tracing method are provided to support the discussion.


2021 ◽  
Author(s):  
Guillaume Chambon ◽  
Thierry Faug ◽  
Mohamed Naaim

&lt;p&gt;Wet snow avalanches present distinctive features such as unusual trajectories, peculiar deposit shapes, and a rheological behavior displaying a combination of granular and pasty features depending on the actual snow liquid water content. Complex transitions between dry (cold) and wet (hot) flow regimes can also occur during a single avalanche flow. In an attempt to account for this complexity, we report on numerical simulations of avalanches using a frictional-cohesive rheology implemented in a depth-averaged shallow-flow model. Through extensive sensitivity studies on synthetic and real topographies, we show that cohesion plays a key role to enrich the physics of the simulated flows, and to represent realistic avalanche behaviors. First, when coupled to a proper treatment of the yielding criterion, cohesion provides a way to define objective stopping criteria for the flow, independently of the issues incurred by artificial diffusion of the numerical scheme. Second, and more importantly, the interplay between cohesion and friction gives raise to a variety of nontrivial physical effects affecting the dynamics of the avalanches and the morphology of the deposits. The relative weights of frictional and cohesive contributions to the overall stress are investigated as a function of space and time during the propagation, and related to the formation of specific features such as lateral lev&amp;#233;es, hydraulic jumps, etc. This study represents a first step towards robust avalanches simulations, spanning the wide range of possible flow regimes, through shallow-flow approaches. Future improvements involving more refined cohesion parameterizations will be discussed.&lt;/p&gt;


2004 ◽  
Vol 126 (3) ◽  
pp. 473-481 ◽  
Author(s):  
B. Jacod ◽  
C. H. Venner ◽  
P. M. Lugt

The effect of longitudinal roughness on the friction in EHL contacts is investigated by means of numerical simulations. In the theoretical model the Eyring equation is used to describe the rheological behavior of the lubricant. First the relative friction variation caused by a single harmonic roughness component is computed as a function of the amplitude and wavelength for a wide range of operating conditions. From the results a curve fit formula is derived for the relative friction variation as a function of the out-of-contact geometry of the waviness and a newly derived parameter characterizing the response of the lubricant to pressure variations. Subsequently, the case of a superposition of two harmonic components is considered. It is shown that for the effect on friction such a combined pattern can be represented by a single equivalent wave. The amplitude and the wavelength of the equivalent wave can be determined from a nonlinear relation in terms of the amplitudes and wavelengths of the individual harmonic components. Finally the approach is applied to the prediction of the effect of a real roughness profile (many components) on the friction. From a comparison of the results with full numerical simulations it appears that the simplified approach is quite accurate.


2017 ◽  
Vol 59 (76pt2) ◽  
pp. 181-190 ◽  
Author(s):  
Thomas J. Ballinger ◽  
Edward Hanna ◽  
Richard J. Hall ◽  
Thomas E. Cropper ◽  
Jeffrey Miller ◽  
...  

ABSTRACTThe Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013. (~6σ below the 1981–2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt ~50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change.


2008 ◽  
Vol 5 (2) ◽  
pp. 535-547 ◽  
Author(s):  
A. Olsen ◽  
K. R. Brown ◽  
M. Chierici ◽  
T. Johannessen ◽  
C. Neill

Abstract. We present the first year-long subpolar trans-Atlantic set of surface seawater CO2 fugacity (fCO2sw) data. The data were obtained aboard the MV Nuka Arctica in 2005 and provide a quasi-continuous picture of the fCO2sw variability between Denmark and Greenland. Complementary real-time high-resolution data of surface chlorophyll-a (chl-a) concentrations and mixed layer depth (MLD) estimates have been collocated with the fCO2sw data. Off-shelf fCO2sw data exhibit a pronounced seasonal cycle. In winter, surface waters are saturated to slightly supersaturated over a wide range of temperatures. Through spring and summer, fCO2sw decreases by approximately 60 μatm, due to biological carbon consumption, which is not fully counteracted by the fCO2sw increase due to summer warming. The changes are synchronous with changes in chl-a concentrations and MLD, both of which are exponentially correlated with fCO2sw in off-shelf regions.


Sign in / Sign up

Export Citation Format

Share Document