scholarly journals Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 344
Author(s):  
Syaiful ◽  
Tri Wahyuni ◽  
Bambang Yunianto ◽  
Nazaruddin Sinaga

Improving heat transfer from surface to airflow is a current research concern for enhancing energy efficiency. The use of vortex generators for improving heat transfer from the surface to the airflow is very effective. Therefore, this study focuses on applying flat and concave vortex generators with and without holes in order to improve heat transfer. In this study, the number of pairs of vortex generators was varied from one to three pairs at a certain angle of attack for various forms of vortex generators. The airflow velocity through the duct was varied in the range of 0.4 to 2.0 m/s at 0.2 m/s intervals. From the investigation results, we observed that the highest thermal performance was found with the use of concave delta winglets without holes for various pairs of vortex generators in terms of the overall Reynolds number. The highest thermal enhancement factor was found to be around 1.42 at a Reynolds number of approximately 9000. From this study, it was also shown that the lowest cost–benefit ratio was about 1.75 at a Reynolds number of approximately 3500 for three pairs of vortex generators.

2020 ◽  
Vol 14 (3) ◽  
pp. 7282-7295
Author(s):  
R. Venkatesh ◽  
Nitesh Kumar ◽  
N. Madhwesh ◽  
Manjunath M.S.

This paper presents the effect of deflector ribs on the thermal performance of flat plate solar air heater using Computational Fluid Dynamics (CFD) methodology. The analysis is carried out using two-dimensional computational domain for the Reynolds number range of 6000-18000. RNG k-є turbulence model is used to capture the turbulence characteristics of the flow. The deflector rib has a cross-section of isosceles triangle and is placed transversely with respect to the flow. The distance between consecutive ribs is varied as 40mm, 80mm, 160mm and 320mm while the air gap height is varied as 2mm, 3mm, 5mm and 10mm. The numerical model is validated against the well-known correlation of Dittus-Boelter for smooth duct. The simulation results reveal that the presence of deflector ribs provide augmented heat transfer through flow acceleration and enhanced turbulence levels. With reference to smooth duct, the maximum achieved heat transfer improvement is about 1.39 times for the inter-rib distance of 40mm and an air gap height of 3mm while the maximum fiction factor achieved was about 3.82 times for pitch value of 40mm and air gap height of 3mm. The highest thermal enhancement factor is achieved for the pitch value of 320mm and an air gap height of 3mm at Re=6000. The air gap height value of 10mm exhibits thermal enhancement factor values lesser than 1.0 and hence is not recommended for use as heat transfer enhancement device for the entire Reynolds number range used in the analysis. The pitch value of 320 mm exhibits thermal enhancement factor greater than 1.0 for almost all the Reynolds number range used in the analysis and varies between 0.93 and 1.07.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1482
Author(s):  
Yuting Jia ◽  
Jianwei Huang ◽  
Jingtao Wang ◽  
Hongwei Li

A novel microchannel heat sink with oval-shaped micro pin fins (MOPF) is proposed and the characteristics of fluid flow and heat transfer are studied numerically for Reynolds number (Re) ranging from 157 to 668. In order to study the influence of geometry on flow and heat transfer characteristics, three non-dimensional variables are defined, such as the fin axial length ratio (α), width ratio (β), and height ratio (γ). The thermal enhancement factor (η) is adopted as an evaluation criterion to evaluate the best comprehensive thermal-hydraulic performance of MOPF. Results indicate that the oval-shaped pin fins in the microchannel can effectively prevent the rise of heat surface temperature along the flow direction, which improves the temperature distribution uniformity. In addition, results show that for the studied Reynolds number range and microchannel geometries in this paper, the thermal enhancement factor η increases firstly and then decreases with the increase of α and β. In addition, except for Re = 157, η decreases first and then increases with the increase of the fin height ratio γ. The thermal enhancement factor for MOPF with α = 4, β = 0.3, and γ = 0.5 achieves 1.56 at Re = 668. The results can provide a theoretical basis for the design of a microchannel heat exchanger.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


Author(s):  
Samsul Islam ◽  
Md. Shariful Islam ◽  
Mohammad Zoynal Abedin

The heat transfer enhancement is recycled in many engineering uses such as heat exchangers, refrigeration and air conditioning structures, chemical apparatuses, and automobile radiators. Hence many enhancing extended fin patterns are developed and used. In multi louvered fin, in this segment for multi-row fin and tube heat exchanger, an increase in heat transfer enhancement is found 58% for ReH = 350. When the Reynolds number is 1075, the temperature gradient is more distinct for greater louver angle that is the higher heat transfer enhanced for large louver angle. For variable louver angle heat exchanger, the maximum heat transfer improvement achieved by 118% Reynolds number at 1075. In the vortex generator for the delta winglet vortex generator, the extreme enhancement of heat transfer increased to 16% compared to the baseline geometry (at ReDh = 600). For a compact louvered heat exchanger, the results showed that a regular arrangement of louvered fins gives a 9.3% heat transfer improvement. In multi-region louver fins and flat tubes heat exchanger, the louver fin with 4 regions and the louver fin with 6 regions are far better than the conventional fin in overall performance. At the same time, the louver fin with 6 regions is also better than the louver fin with 4-region. The available work is in experimental form as well as numerical form performed by computational fluid dynamics.


2021 ◽  
pp. 183-183
Author(s):  
Sendogan Karagoz ◽  
Semih Erzincanli ◽  
Orhan Yildirim ◽  
Ilker Firat ◽  
Mehmet Kaya ◽  
...  

This experimental study deals with the heat transfer and friction effects of sinusoidal part turbulators for single-phase flows occurring in a circular shaped pipe. Turbulators with three different radius values are placed in the pipe to make the flow turbulent. In this way, changes in Nusselt number and friction coefficient are examined. As a result of the experiments made with Reynolds numbers in the range of 6614-20710, the increase rates of the Nusselt numbers of turbulators with 20 mm, 110 mm and 220 mm radius compared to the empty pipe were obtained as 153.49%, 85.36%, and 52.09%, respectively. As a result of the decrease in the radius, there was an increase in the Nusselt number and the friction factor. Parallel to the Nusselt number, the highest friction factor was obtained in the smallest radius turbulator. It was found that the thermal enhancement factors of 110 mm and 220 mm radius turbulators increased by 179.54% and 132.95%, respectively, compared to the 20 mm radius turbulator. Similarly, it was determined that the thermal enhancement factor of the 110 mm radius turbulator increased by 20% compared to the 220 mm radius turbulator.


2021 ◽  
Author(s):  
Nabil Kharoua ◽  
Hamza Semmari ◽  
Houssem Korichi ◽  
Mehdi Haroun

Abstract Canadian Wells exploit the quasi-stable underground temperature throughout the year for cooling and heating applications. This type of heat exchangers is used in residential buildings, agriculture and industry. Implementing Vortex Generators (VGs) is intended to disturb the thermal and dynamic boundary layers developing in the near-wall regions leading to the increase of the heat transfer coefficient. The present work investigates the positive effects of a sequence of several rows of VGs. The commercial code ANSYS FLUENT was used to perform numerical simulations mimicking the variation of the seasonal operational conditions occurring within one year. The ambient conditions were considered for the city of Constantine located in the east of Algeria at an altitude of 600m over the sea level. Sinusoidal functions of time and depth, were used for the yearly variations of the ground and air temperatures. Parallelepiped VGs were considered in this study. The Reynolds number was in the range Re = 14975–42789. The results illustrated a contrasting effect of the Reynolds number on the heat transfer coefficient and the temperature difference between the inlet and outlet of the Canadian Well. In terms of number of VGs rows, the beneficial heat transfer effects were observed till the fifth row only.


2019 ◽  
Vol 13 (3) ◽  
pp. 5562-5587 ◽  
Author(s):  
M. S. Manjunath ◽  
R. Venkatesh ◽  
N. Madhwesh

The aim of this study is to determine the effect of U-shaped rib turbulator on the flow and heat transfer characteristics of flat plate solar air heater using two dimensional CFD analysis. The analysis is carried out using the CFD software tool ANSYS Fluent for the flow Reynolds number ranging from 9000 to 21,000.The relative pitch(P/e) of the U-shaped rib is varied as 5, 10, 25 and 40 for a fixed relative rib height of 0.0421. It is shown that the U-shaped rib augments the Nusselt number by about 1.76 times while the friction factor increased by about 1.95 times with reference to smooth duct for a relative pitch of 10 and 5 respectively. The maximum thermal enhancement factor is obtained as 1.5 for the configuration of P/e=25. A comparative analysis of U-shaped rib with circular rib reveals that the U-shaped rib turbulator is found to be more effective in providing heat transfer enhancement and has about 15% higher thermal enhancement factor as compared to circular turbulator.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1959 ◽  
Author(s):  
Ali Sadeghianjahromi ◽  
Saeid Kheradmand ◽  
Hossain Nemati ◽  
Jane-Sunn Liaw ◽  
Chi-Chuan Wang

This study performs a 3D turbulent flow numerical simulation to improve heat transfer characteristics of wavy finandtube heat exchangers. A compound design encompassing louver, flat, and vortex generator onto wavy fins can significantly enhance the heat transfer performance of wavy fin-and-tube heat exchangers. Replacement of wavy fins around tubes with flat fins is not effective as far as the reduction of thermal resistance is concerned, although an appreciable pressure drop reduction can be achieved. Adding two louvers with a width of 8 mm to the flat portion can reduce thermal resistance up to 6% in comparison with the reference wavy fin. Increasing the louver number and width can further decrease the thermal resistance. Also, it is found that the optimum louver angle is equal to the wavy angle for offering the lowest thermal resistance. Therefore, compound geometry with three louvers, a width of 12 mm, and the louver angle being equal to wavy angle with waffle height to be the same as fin pitch of the reference wavy fin has the most reduction in thermal resistance of 16% for a pumping power of 0.001 W. Adding punching longitudinal vortex generators on this compound geometry can further decrease thermal resistance up to 18%.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Hamdi E. Ahmed ◽  
M. Z. Yusoff

This paper presents the laminar forced convection of Al2O3–water nanofluid in a triangular channel, subjected to a constant and uniform heat flux at the slant walls, using delta-winglet pair (DWP) of vortex generator which is numerically investigated in three dimensions. The governing equations of mass, momentum, and energy are solved using the finite volume method (FVM). The nanofluid properties are estimated as constant and temperature-dependent properties. The nanoparticle concentrations and diameters are in ranges of 1–4% and 25–85 nm, respectively. Different attack angles of vortex generators are examined which are 7 deg, 15 deg, 30 deg, and 45 deg with range of Reynolds number from 100 to 2000. The results show that the heat transfer coefficient is remarkable dependent on the attack angle of vortex generators and the volume fraction of nanoparticles. The heat transfer coefficient increases as the attack angle increases from 7 deg to 30 deg and then diminishes at 45 deg. The heat transfer rate remarkably depends on the nanoparticle concentration and diameter, attack angle of vortex generator and Reynolds number. An increase in the shear stress is found when attack angle, volume fraction, and Reynolds number increase.


1969 ◽  
Vol 91 (1) ◽  
pp. 91-99 ◽  
Author(s):  
T. R. Johnson ◽  
P. N. Joubert

Experimental investigations were carried out to examine the effect of vortex generators on drag and heat transfer from a circular cylinder in a crossflow. The cylinder was fitted with two rows of vortex generators which were symmetrically placed on either side of and parallel to the front stagnation line. One configuration of vortex generator was used and the angular position of the rows from the front stagnation line was varied. In the heat transfer runs the vortex generator position remained unvaried. Results are presented to show the variation of drag coefficient with Reynolds number for several angular positions of the generator rows. Results are also presented to show the variation of Nusselt number with Reynolds number both for a cylinder with and without generators. These show that both decreases in drag coefficient and increases in Nusselt number can be obtained when vortex generators are fitted.


Sign in / Sign up

Export Citation Format

Share Document