scholarly journals Impact of Processing Technology on Macro- and Micronutrient Profile of Protein-Enriched Products from Fish Backbones

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 950
Author(s):  
Mehdi Abdollahi ◽  
Haizhou Wu ◽  
Ingrid Undeland

Impacts of processing technology (mechanical separation and pH-shift processing) on protein recovery from salmon, herring and cod backbones and the content of macro- and micronutrients in the recovered protein enriched products were investigated. Mechanical separation led to higher protein recovery compared with the pH-shift process and using both techniques, recovery ranked the species as herring > salmon > cod. However, the pH-shift process up-concentrated protein from herring and salmon backbones more efficiently than mechanical separation by removing more fat and ash. This consequently reduced n-3 PUFA and vitamin D content in their protein isolates compared with the backbones and mechanically separated meat (MSM). Cod protein isolate, however, contained higher levels of these nutrients compared with MSM. Mechanical separation concentrated vitamins E and C in salmon MSM but not for cod and herring. Opposite, pH-shift processing reduced levels of these two vitamins for cod and herring backbones, while vitamins D and C were reduced for salmon. For minerals, selenium, calcium, magnesium, and potassium were lower in protein isolates than MSM, while copper, zinc, iron and manganese were similar or higher. Overall, there is a major potential for upcycling of fish backbones to food ingredients, but processing technology should be carefully balanced against the desired nutrient profile and final application area.

2017 ◽  
Vol 13 (4) ◽  
Author(s):  
Manat Chaijan ◽  
Worawan Panpipat

Abstract The effect of acid and alkaline pH shift processes on removal of total lipids, cholesterol, nucleic acids and haem pigments during production of protein isolates from broiler meat was investigated. The gel-forming ability of resulting protein isolates were evaluated in comparison with raw broiler meat and water washed broiler meat. Significant reduction of total lipids, cholesterol, nucleic acids and haem proteins was obtained from both pH shift processes (p < 0.05). Acid process recovered more protein with less total haem pigments resulting in a greater breaking force and whiteness of the isolate gel compared to alkaline counterpart (p < 0.05). However, protein isolate gels showed inferior deformation and water holding capacity to washed mince gel (p < 0.05). Therefore, the pH shift processing could be used to produce a functional protein isolate with low nucleic acids, haem pigments and lipids and, thereby, reduced cholesterol level. The protein isolates, particularly acid version, still had good gelling properties.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 678 ◽  
Author(s):  
Katharina Schlegel ◽  
Anika Leidigkeit ◽  
Peter Eisner ◽  
Ute Schweiggert-Weisz

Lupin protein isolate was fermented with eight different microorganisms to evaluate the influence on sensory profile, techno-functional properties and protein integrity. All investigated microorganisms were able to grow in lupin protein isolate. The results showed that the foaming activity in the range of 1646–1703% and the emulsifying capacity in the range of 347–595 mL of the fermented lupin protein isolates were similar to those of the unfermented ones. Protein solubility at pH 4 showed no significant changes compared to unfermented lupin protein isolate, whereas the solubility at pH 7 decreased significantly from 63.59% for lupin protein isolate to solubilities lower than 42.35% for fermented lupin protein isolate. Fermentation with all microorganisms showed the tendency to decrease bitterness from 2.3 for lupin protein isolate (LPI) to 1.0–2.0 for the fermented ones. The most promising microorganisms for the improvement of the sensory properties of lupin protein isolates were Lactobacillus brevis as it reduced the intensity of characteristic aroma impression (pea-like, green bell pepper-like) from 4.5 to 1.0. The SDS-PAGE results showed the fermentation treatment appeared not to be sufficiently effective to destruct the protein integrity and thus, deplete the allergen potential of lupin proteins. Fermentation allows the development of food ingredients with good functional properties in foam formation and emulsifying capacity, with a well-balanced aroma and taste profile.


2021 ◽  
Author(s):  
Uzair Shafiq ◽  
Kirankumar Gopalbai Baraiya ◽  
VIJAY KUMAR REDDY SURASANI ◽  
Sagar Joshi ◽  
Raju Chikoppa Varadaraju

Abstract Recovery of proteins from grouper (Epinephelus diacanthus) filleting waste was done using isoelectric solubilization method. During the isolation, influence of process variables such as; temperature, ratio of solvent and homogenate, pH, time of centrifugation and speed of centrifugation on protein yields was studied. It was observed that the homogenate to solvent ratio, centrifugation speed protein recoveries. For isolating the proteins from grouper waste using pH shift process the optimum conditions found were; pH-11.0 in alkaline range, pH 3.0 in acidic range, 120 min extraction time, homogenate to solvent ratio of 1:6 and centrifugation speed of 10000 rpm. During the pH shift processing of grouper proteins myoglobin, total pigments and lipid content of proteins were reduced by 90.77, 70.79 and 82.69%, and 93.91, 79.59 and 82.04%, in alkaline and acidic extraction process, respectively. A significant increase in the lightness and whiteness values of the isolates was observed as compared to the raw material. Protein isolates obtained using acidic solubilisation process were found to be whiter than alkali-aided protein isolate.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 230
Author(s):  
Tanja Kakko ◽  
Annelie Damerau ◽  
Anni Nisov ◽  
Anna Puganen ◽  
Saska Tuomasjukka ◽  
...  

Fractionation is a potential way to valorize under-utilized fishes, but the quality of the resulting fractions is crucial in terms of their applicability. The aim of this work was to study the quality of protein isolates and hydrolysates extracted from roach (Rutilus rutilus) and Baltic herring (Clupea harengus membras) using either pH shift or enzymatic hydrolysis. The amino acid composition of protein isolates and hydrolysates mostly complied with the nutritional requirements for adults, but protein isolates produced using pH shift showed higher essential to non-essential amino acid ratios compared with enzymatically produced hydrolysates, 0.84–0.85 vs. 0.65–0.70, respectively. Enzymatically produced protein hydrolysates had a lower total lipid content, lower proportion of phospholipids, and exhibited lower degrees of protein and lipid oxidation compared with pH-shift-produced isolates. These findings suggest enzymatic hydrolysis to be more promising from a lipid oxidation perspective while the pH-shift method ranked higher from a nutrient perspective. However, due to the different applications of protein isolates and hydrolysates produced using pH shift or enzymatic hydrolysis, respectively, the further optimization of both studied methods is recommended.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Na Thi Ty Ngo ◽  
Fereidoon Shahidi

AbstractCamelina and flixweed (sophia) seed protein isolates were prepared using both the conventional extraction and ultrasonic-assisted extraction methods at 40 kHz for 20 min, and their functional properties investigated. SDS-PAGE showed that both ultrasound-assisted and conventional extractions resulted in a similar protein profile of the extract. The application of ultrasound significantly improved protein extraction/content and functional properties (water holding capacity, oil absorption capacity, emulsifying foaming properties, and protein solubility) of camelina protein isolate and sophia protein isolate. The water-holding and oil absorption capacities of sophia protein isolate were markedly higher than those of camelina protein isolate. These results suggest that camelina protein isolate and sophia protein isolate may serve as natural functional ingredients in the food industry. Graphical Abstract


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1589
Author(s):  
Susana Cofrades ◽  
Alba Garcimartín ◽  
Joaquín Gómez-Estaca ◽  
Francisco J. Sánchez-Muniz ◽  
Beatriz Herranz ◽  
...  

This paper examines the effect of the type of the emulsifying protein (EP) (sodium caseinate (SC) and whey protein isolate (WPI)) on both oil-in-water liquid-like emulsions (Es) and the corresponding cold gelled emulsions (GEs), and also the effect of addition of carob extract rich in condensed tannins (T). The systems, intended as functional food ingredients, were studied in various different respects, including rheological behaviour, in vitro gastrointestinal digestion with determination of the release of non-extractable proanthocyanidins (NEPA) from T, antioxidant activity and lipolysis. EP significantly affects the rheological behaviour of both Es and GEs. T incorporation produced a structural reinforcement of GEs, especially in the case of SC. The digests from Es displayed a higher antioxidant activity than those from GEs. T lipase inhibition was observed only in the formulations with WPI. Our results highlight the importance, in the design of functional foods, of analyzing different variables when incorporating a bioactive compound into a food or emulsion in order to select the better combination for the desired objective, owing to the complex interplay of the various components.


Sign in / Sign up

Export Citation Format

Share Document