scholarly journals Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1150
Author(s):  
Rui Cui ◽  
Bifen Zhu ◽  
Jiatong Yan ◽  
Yuyue Qin ◽  
Mingwei Yuan ◽  
...  

The worsening environment and the demand for safer food have accelerated the development of new food packaging materials. The objective of this research is to prepare antimicrobial food packaging film with controlled release by loading cinnamaldehyde (CIN) on etched halloysite nanotubes (T-HNTs) and adding it to sodium alginate (SA) matrix. The effects of T-HNTs-CIN on the physical functional properties and antibacterial activity of the film were systematically evaluated, and the release of CIN in the film was also quantified. Transmission electron microscopy and nitrogen adsorption experiments showed that the halloysite nanotubes had been etched and CIN was successfully loaded into the T-HNTs. The addition of T-HNTs-CIN significantly improved the water vapor barrier properties and tensile strength of the film. Similarly, the presence of T-HNTs-CIN in the film greatly reduced the negative effects of ultraviolet rays. The release experiment showed that the diffusion time of CIN in SA/T-HNTs-CIN film to fatty food simulation solution was delayed 144 h compared with that of SA/CIN film. Herein, the antibacterial experiment also confirmed the controlled release effect of T-HNTs on CIN. In conclusion, SA/T-HNTs-CIN film might have broad application prospects in fatty food packaging.

2019 ◽  
Vol 43 (26) ◽  
pp. 10523-10530 ◽  
Author(s):  
Leila Zeraatpishe ◽  
Alireza Mohebali ◽  
Majid Abdouss

Schematic design of a new method for fabrication of biocompatible pH sensitive halloysite nanocomposites for controlled release of phenytoin sodium.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 137 ◽  
Author(s):  
Cristina Mellinas ◽  
Marina Ramos ◽  
Aida Grau-Atienza ◽  
Anna Jordà ◽  
Nuria Burgos ◽  
...  

In this study, new active PCL (poly(ε-caprolactone)) films containing α-tocopherol (TOC) and MSU-X mesoporous silica were prepared by melt blending. The studied additives were directly incorporated into the polymer matrix or by impregnating TOC into MSU-X silica (PCL-IMP). Thermal, optical, oxygen and water barrier properties as well as oxidation onset parameters, were studied. Films containing MSU-X and/or TOC showed a significant increase in oxidative onset temperature (OOT) and oxidative induction time (OIT), improving thermal stability against materials oxidation by the addition of mesoporous silica and TOC into the polymer matrix. In addition, the effect of MSU-X addition on the migration behaviour of α-tocopherol from active films was investigated at 40 °C using 50% (v/v) ethanol as fatty food simulant, showing PCL-IMP films the lower release content and diffusion coefficient (3.5 × 10−15 cm2 s−1). Moreover, radical scavenging (DPPH and ABTS) and antibacterial activity against E. coli and S. aureus were favoured by the release of α-tocopherol in the developed films. The obtained results have demonstrated the potential of the new PCL-based active formulations for TOC controlled release in antioxidant and antibacterial food packaging applications.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


2021 ◽  
Vol 24 (02) ◽  
Author(s):  
S.N. Wijesooriya ◽  
N. Adassooriya

In this research, novel carboxymethyl cellulose (CMC) based nanocomposite film containing 5%wt of halloysite nanotubes (HNT) was fabricated via solvent casting method as a potential biodegradable packaging material. The performances of the nanocomposite packaging material was investigated by assessing the moisture content, moisture uptake, water solubility, water vapor barrier properties and opacity. The incorporation of 5%wt HNT into the film remarkably reduced the moisture uptake by ∼ 28.01% at 97% RH and 31.08% at 40% RH. Water permeability value of CMC/HNT film showed as 7.08 ± 0.26 × 10−11 gm/m2Pas at freezing, 3.37 ± 0.33 × 10−11 gm/m2Pas at refrigeration and 1.14 ± 0.00 × 10−11 gm/m2Pas at ambient environmental conditions respectively. Subsequent to the thermal annealing process, the water vapor permeation ability was drastically declined in the HNT added nanocomposite films at all three different conditions (freezing, refrigeration and ambient) due to enhancing the crystalline structure. Furthermore, the addition of nanofillers into the polymer matrix significantly induced the UV blocking property of the film. These findings disclosed that prepared CMC/5%HNT nanocomposite films can be a potential food packaging material.Keywords: barrier properties, carboxy methyl cellulose, halloysite nanotubes


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Razieh Niazmand ◽  
Bibi Marzieh Razavizadeh ◽  
Farzaneh Sabbagh

The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


2020 ◽  
Vol 35 (4) ◽  
pp. 491-515
Author(s):  
Tom Lindström ◽  
Folke Österberg

AbstractThis review deals with the evolution of bio-based packaging and the emergence of various nanotechnologies for primary food packaging. The end-of life issues of packaging is discussed and particularly the environmental problems associated with microplastics in the marine environment, which serve as a vector for the assimilation of persistent organic pollutants in the oceans and are transported into the food chain via marine and wild life. The use of biodegradable polymers has been a primary route to alleviate these environmental problems, but for various reasons the market has not developed at a sufficient pace that would cope with the mentioned environmental issues. Currently, the biodegradable plastics only constitute a small fraction of the fossil-based plastic market. Fossil-based plastics are, however, indispensable for food safety and minimization of food waste, and are not only cheap, but has generally more suitable mechanical and barrier properties compared to biodegradable polymers. More recently, various nanotechnologies such as the use of nanoclays, nanocellulose, layer-by-layer technologies and polyelectrolyte complexes have emerged as viable technologies to make oxygen and water vapor barriers suitable for food packaging. These technological developments are highlighted as well as issues like biodegradation, recycling, legislation issues and safety and toxicity of these nanotechnologies.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Sign in / Sign up

Export Citation Format

Share Document