scholarly journals Microbiological Food Safety of Seaweeds

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2719
Author(s):  
Trond Løvdal ◽  
Bjørn Tore Lunestad ◽  
Mette Myrmel ◽  
Jan Thomas Rosnes ◽  
Dagbjørn Skipnes

The use of seaweeds in the human diet has a long history in Asia and has now been increasing also in the western world. Concurrent with this trend, there is a corresponding increase in cultivation and harvesting for commercial production. Edible seaweed is a heterogenous product category including species within the green, red, and brown macroalgae. Moreover, the species are utilized on their own or in combinatorial food products, eaten fresh or processed by a variety of technologies. The present review summarizes available literature with respect to microbiological food safety and quality of seaweed food products, including processing and other factors controlling these parameters, and emerging trends to improve on the safety, utilization, quality, and storability of seaweeds. The over- or misuse of antimicrobials and the concurrent development of antimicrobial resistance (AMR) in bacteria is a current worldwide health concern. The role of seaweeds in the development of AMR and the spread of antimicrobial resistance genes is an underexplored field of research and is discussed in that context. Legislation and guidelines relevant to edible seaweed are also discussed.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 785
Author(s):  
Abubakar Siddique ◽  
Sara Azim ◽  
Amjad Ali ◽  
Saadia Andleeb ◽  
Aitezaz Ahsan ◽  
...  

Salmonellosis caused by non-typhoidal Salmonellaenterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.


Author(s):  
Luís Guilherme de Araújo Longo ◽  
Herrison Fontana ◽  
Viviane Santos de Sousa ◽  
Natalia Chilinque Zambão da Silva ◽  
Ianick Souto Martins ◽  
...  

Klebsiella pneumoniae causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant K. pneumoniae isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely mgrB, yebO, yobH and the transcriptional regulator kdgR. The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene bla KPC-2, the extended-spectrum beta-lactamase (ESBL)-encoding gene bla SHV-28 and the beta-lactamase-encoding gene bla OXA-1. Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.


2021 ◽  
Vol 1 (1) ◽  
pp. 17-20
Author(s):  
Ahmed Abd El-Mawgoud ◽  
Azza El-Sawah ◽  
Soad Nasef ◽  
Al-Hussien Dahshan ◽  
Ahmed Ali

In the current study, ten avian pathogenic E. coli (APEC) isolates of the most predominant APEC serogroups isolated from broiler chickens in Egypt were screened for their virulence and antimicrobial resistance genes pattern using PCR. Five selected virulence gene patterns were further investigated for their in-vivo pathogenicity test. Results showed a 100% prevalence of the β-lactams and tetracyclines resistance genes. However, aminoglycoside and quinolone resistance genes were not detected. Also, 80% of the tested isolates harbored mcr-1 gene, colistin resistance gene. In-vivo pathogenic strains consistently harbored the virulence gene pattern of fimH, fimA, papC, iutA, and tsh. Additionally, the tsh gene was consistently detected with lethal APEC isolates in day-old chicks. These results highlighted the high prevalence of antimicrobial and virulence genes in APEC that potentially represent a public health concern. In this study, the virulence genes fimH, fimA, papC, iutA, and tsh were the most common virulence gene patterns associated with pathogenicity in day-old chicks.


2013 ◽  
Vol 76 (4) ◽  
pp. 723-735 ◽  
Author(s):  
KAREN EVERSTINE ◽  
JOHN SPINK ◽  
SHAUN KENNEDY

Economically motivated adulteration (EMA) of food, also known as food fraud, is the intentional adulteration of food for financial advantage. A common form of EMA, undeclared substitution with alternative ingredients, is usually a health concern because of allergen labeling requirements. As demonstrated by the nearly 300,000 illnesses in China from melamine adulteration of infant formula, EMA also has the potential to result in serious public health consequences. Furthermore, EMA incidents reveal gaps in quality assurance testing methodologies that could be exploited for intentional harm. In contrast to foodborne disease outbreaks, EMA incidents present a particular challenge to the food industry and regulators because they are deliberate acts that are intended to evade detection. Large-scale EMA incidents have been described in the scientific literature, but smaller incidents have been documented only in media sources. We reviewed journal articles and media reports of EMA since 1980. We identified 137 unique incidents in 11 food categories: fish and seafood (24 incidents), dairy products (15), fruit juices (12), oils and fats (12), grain products (11), honey and other natural sweeteners (10), spices and extracts (8), wine and other alcoholic beverages (7), infant formula (5), plant-based proteins (5), and other food products (28). We identified common characteristics among the incidents that may help us better evaluate and reduce the risk of EMA. These characteristics reflect the ways in which existing regulatory systems or testing methodologies were inadequate for detecting EMA and how novel detection methods and other deterrence strategies can be deployed. Prevention and detection of EMA cannot depend on traditional food safety strategies. Comprehensive food protection, as outlined by the Food Safety Modernization Act, will require innovative methods for detecting EMA and for targeting crucial resources toward the riskiest food products.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Koji Yahara ◽  
Kevin C. Ma ◽  
Tatum D. Mortimer ◽  
Ken Shimuta ◽  
Shu-ichi Nakayama ◽  
...  

Abstract Background Antimicrobial resistance in Neisseria gonorrhoeae is a global health concern. Strains from two internationally circulating sequence types, ST-7363 and ST-1901, have acquired resistance to third-generation cephalosporins, mainly due to mosaic penA alleles. These two STs were first detected in Japan; however, the timeline, mechanism, and process of emergence and spread of these mosaic penA alleles to other countries remain unknown. Methods We studied the evolution of penA alleles by obtaining the complete genomes from three Japanese ST-1901 clinical isolates harboring mosaic penA allele 34 (penA-34) dating from 2005 and generating a phylogenetic representation of 1075 strains sampled from 35 countries. We also sequenced the genomes of 103 Japanese ST-7363 N. gonorrhoeae isolates from 1996 to 2005 and reconstructed a phylogeny including 88 previously sequenced genomes. Results Based on an estimate of the time-of-emergence of ST-1901 (harboring mosaic penA-34) and ST-7363 (harboring mosaic penA-10), and > 300 additional genome sequences of Japanese strains representing multiple STs isolated in 1996–2015, we suggest that penA-34 in ST-1901 was generated from penA-10 via recombination with another Neisseria species, followed by recombination with a gonococcal strain harboring wildtype penA-1. Following the acquisition of penA-10 in ST-7363, a dominant sub-lineage rapidly acquired fluoroquinolone resistance mutations at GyrA 95 and ParC 87-88, by independent mutations rather than horizontal gene transfer. Data in the literature suggest that the emergence of these resistance determinants may reflect selection from the standard treatment regimens in Japan at that time. Conclusions Our findings highlight how antibiotic use and recombination across and within Neisseria species intersect in driving the emergence and spread of drug-resistant gonorrhea.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammed Elbediwi ◽  
Yanting Tang ◽  
Dawei Shi ◽  
Hazem Ramadan ◽  
Yaohui Xu ◽  
...  

Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding β-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > −0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.


Author(s):  
Ella Derby ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Dale Chen ◽  
Lorraine McIntyre

  Background: Rates of foodborne illness linked to consumers misinterpreting, or lack of proper cooking instructions on frozen food products continue to rise. With many recalls and outbreaks in the recent years surrounding frozen breaded chicken (FBC) products due to consumers not adequately cooking products and in turn becoming ill. However, it is not just frozen breaded chicken to blame, frozen microwavable entrees have also contributed to this problem. Therefore, the purpose of this project was to determine what was actually being displayed on the packaging of these frozen foods. Identifying whether or not frozen food products have clear, specific and consistent cooking instructions for the consumers is critical in identifying the risk of cooking and eating these foods. Methods: Secondary data was obtained from the British Columbia Centers for Disease Control (BCCDC) of cooking instructions on FBC packaging, and primary data was collected through visiting grocery stores in the Metro Vancouver area by surveying cooking instructions on frozen microwavable entrees packaging. Four categories of data were assessed, 2008 and 2018 raw FBC products, 2018 cooked FBC, and 2019 frozen microwavable entrees. Parameters such as inclusion of internal cooking temperature, thermometer usage, microwave instructions, and additional food safety handling was gathered. Chi-square tests were used to analyze the results with the statistical software NCSS12. Results: Of all categories surveyed 87.1% (n=122) said to cook the product to a minimum of 74°C, and 12.9% (n=18) did not state anything. 2018 raw FBC always stated an internal cooking temperature (100%), whereas 58% of the 2008 raw FBC stated an internal temperature and 89% of both the 2019 frozen entrees and 2018 cooked FBC did. Out of all 140 products surveyed across categories only 8% stated to use a thermometer when cooking to ensure food has reached proper internal temperature. The frequency of categories to display food safety was as follows, the 2018 raw FBC (82%) and the 2008 raw FBC (79%), followed by the 2019 frozen entrees (42%) and the 2018 cooked FBC (21%). For the microwave instructions the frozen entrees almost always stated this (81%), whereas the 2008 and 2018 raw FBC both never stated to use a microwave (0%). There was a significant association between products and the inclusion of the statement of internal cooking temperature and thermometer usage. This was based on the food product category itself, frozen breaded chicken or frozen entrees, or based on manufacturer of the product. Conclusions: It was evident that the major gap lies in the consistency of instructions. Almost every manufacturer had their cooking instructions presented differently, which could in turn confuse the consumer. Instructions also rarely stated to use a thermometer to check the internal temperature, although almost always stated a specific temperature to cook to. A small portion of manufactures are diligent about displaying all necessary information to the consumer such as, Kraft, Conagra foods, and Olymel which adequately met all parameters assessed. In order to fix the gaps of inconsistency of instructions this information can be used as educational tools by the BCCDC to inform customers on what to look for in cooking instructions of frozen  


2018 ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
Julie Ann Kase

AbstractIllnesses caused by Shiga toxin-producingEscherichiacoli (STECs) can be life threatening, such as hemolytic uremic syndrome (HUS). The STECs most frequently identified by USDA’s Microbiological Data Program (MDP) carried toxin gene subtypesstx1aand/orstx2a. Here we describe the genome sequences of 331 STECs isolated from foods regulated by the FDA 2010-2017, determining their genomic identity, serotype, sequence type, virulence potential, and prevalence of antimicrobial resistance. Isolates were selected from the MDP archive, routine food testing by field labs (ORA), food testing by a contract company, and our laboratory (ORS). Only 276 (83%) were confirmed as STECs byin silicoanalysis. Foods from which STECs were recovered included cilantro (6%), spinach (25%), lettuce (11%), and flour (9%). Phylogenetic analysis using core genome MLST revealed these STEC genomes were highly variable, with some clustering associated with ST types and serotypes. We detected 95 different sequence types (ST); several ST were previously associated with HUS: ST21 and ST29 (O26:H11), ST11 (O157:H7), ST33 (O91:H14), ST17 (O103:H2), and ST16 (O111:H-).in silicovirulome analyses showed ~ 51% of these strains were potentially pathogenic [besidesstxgene they also carriedeae(25%) or 26%subA(26%)]. Virulence gene prevalence was also determined:stx1 only (19%) -variants a and c;stx2 only (66%) – variants a, b, c, d, e, and g; andstx1/sxt2 (15%). Our data form a new WGS database that can be used to support food safety investigations and monitor the recurrence/emergence ofE. coliin foods.ImportanceShiga toxin-producingEscherichiacoli (STECs) are associated with foodborne outbreaks worldwide; however, surveillance has not previously included genomic analyses for phylogenetics, prevalence, or potential virulence. We constructed the first genomic database of isolates from FDA-regulated foods to help monitor the emergence of new pathogenic STECs. Although only ~30 STECs were isolated per year, 50% of these carried markers associated with pathogenesis either a combination ofeaeplusstx, orsubAplusstx. Moreover, those strains also carried virulence genes associated with severe illnesses. Here we showed that WGS enabled comparisons across isolates to establish phylogeny, help in identification of antibiotic resistance by monitoring the presence of antimicrobial resistance genes, and determined the presence of known virulence genes that have been linked with illnesses. Future food safety investigations will benefit from improved source tracking and risk assessments made possible by these analyses and new WGS database.


2021 ◽  
Vol 11 ◽  
Author(s):  
Serajus Salaheen ◽  
Seon Woo Kim ◽  
Ernest Hovingh ◽  
Jo Ann S. Van Kessel ◽  
Bradd J. Haley

Antimicrobial resistance (AMR) is a major public health concern, and dairy calves, including veal calves, are known reservoirs of resistant bacteria. To investigate AMR in the fecal microbial communities of veal calves, we conducted metagenomic sequencing of feces collected from individual animals on four commercial veal operations in Pennsylvania. Fecal samples from three randomly selected calves on each farm were collected soon after the calves were brought onto the farms (n = 12), and again, just before the calves from the same cohorts were ready for slaughter (n = 12). Results indicated that the most frequently identified phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Fecal microbial communities in samples collected from the calves at the early and late stages of production were significantly different at the genus level (analysis of similarities [ANOSIM] on Bray-Curtis distances, R = 0.37, p < 0.05), but not at the phylum level. Variances among microbial communities in the feces of the younger calves were significantly higher than those from the feces of calves at the late stage of production (betadisper F = 8.25, p < 0.05). Additionally, our analyses identified a diverse set of mobile antimicrobial resistance genes (ARGs) in the veal calf feces. The fecal resistomes mostly consisted of ARGs that confer resistance to aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLS), and these ARGs represented more than 70% of the fecal resistomes. Factors that are responsible for selection and persistence of resistant bacteria in the veal calf gut need to be identified to implement novel control points and interrupt detrimental AMR occurrence and shedding.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 780
Author(s):  
Lorena Varriale ◽  
Ludovico Dipineto ◽  
Tamara Pasqualina Russo ◽  
Luca Borrelli ◽  
Violante Romano ◽  
...  

Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.


Sign in / Sign up

Export Citation Format

Share Document