scholarly journals Selection of Autochthonous LAB Strains of Unripe Green Tomato towards the Production of Highly Nutritious Lacto-Fermented Ingredients

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2916
Author(s):  
Nelson Pereira ◽  
Carla Alegria ◽  
Cristina Aleixo ◽  
Paula Martins ◽  
Elsa M. Gonçalves ◽  
...  

Lactic fermentation of unripe green tomatoes as a tool to produce food ingredients is a viable alternative for adding value to industrial tomatoes unsuitable for processing and left in large quantities in the fields. Fermentation using starter cultures isolated from the fruit (plant-matrix adapted) can have advantages over allochthonous strains in obtaining fermented products with sensory acceptability and potentially probiotic characteristics. This paper details the characterisation of the unripe green tomato lactic microbiota to screen LAB strains for use as starter cultures in fermentation processes, along with LAB strains available from INIAV’s collection. Morphological, biochemical (API system), and genomic (16S rDNA gene sequencing) identification showed that the dominant LAB genera in unripe green tomato are Lactiplantibacillus, Leuconostoc, and Weissella. Among nine tested strains, autochthonous Lactiplantibacillus plantarum and allochthonous Weissella paramesenteroides showed tolerance to added solanine (200 ppm) and the best in vitro probiotic potential. The results indicate that the two LAB strains are promising candidates for manufacturing probiotic fermented foods from unripe green tomatoes.

Author(s):  
L.A. Maldonado ◽  
M.E. Hamid ◽  
O.A. Gamal El Din ◽  
M. Goodfellow

Fifteen of 100 mastitic milk samples from goats suffering from mastitis were tentatively identified as members of the genus Nocardia on the basis of selected phenotypic and chemotaxonomic characteristics. Six of the 15 strains were confirmed as Nocardia farcinica by 16S rDNA gene sequencing and subsequent aligning with relevant actinomycetes found in electronic databases and 2 by other identification criteria. N. farcinica is a serious cause of mastitis with a significant prevalence (15%) among the examined goats. Efforts are needed to optimise and simplify isolation and identification methods.


2019 ◽  
Vol 6 (11) ◽  
pp. 190562 ◽  
Author(s):  
Qingming Zhang ◽  
Hongyu Liu ◽  
Muhammad Saleem ◽  
Caixia Wang

Chlorothalonil is a widely used fungicide, but the contamination of soil and water environments by this chemical causes potential threats to biodiversity. Given the metabolic potential of soil microorganisms, there is a need for developing microbiological approaches to degrade persistent compounds, such as chlorothalonil, in contaminated sites. Here in this study, we isolated a bacterial strain (namely, BJ1) capable of degrading chlorothalonil from a chlorothalonil-contaminated farmland soil in the Shandong Province, China. Using 16S rDNA gene sequencing, morphological and biological characteristics, we identified the strain BJ1 as Stenotrophomonas acidaminiphila . The strain BJ1 uses chlorothalonil as a sole carbon source. At initial concentrations of 50, 100, 200 and 300 mg l −1 , it degraded 91.5%, 89.4%, 86.5% and 83.5% of chlorothalonil after 96 h of inoculation under optimum conditions (30°C and pH 7.0). Two metabolites, methyl-2,5,6-trichloro-3-cyano-4-methoxy-benzoate and methyl-3-cyano-2,4,5,6-tetrachlorobenzoate, were detected and identified based on HPLC–MS analysis, which suggests that the strain BJ1 metabolized chlorothalonil through the hydroxylation of chloro-group and hydration of cyano-group. The results of this study highlight the great potential for this bacterium to be used in chlorothalonil pollution remediation.


2019 ◽  
Vol 71 (2) ◽  
pp. 647-657 ◽  
Author(s):  
J.G. Silva ◽  
R.D. Castro ◽  
F.M. Sant’Anna ◽  
R.M. Barquete ◽  
L.G. Oliveira ◽  
...  

ABSTRACT Minas artisanal cheese is made from endogenous starter cultures, including lactic acid bacteria (LAB). Some LAB may possess probiotic potential. Thus, this study aimed to evaluate the in vitro probiotic properties of lactobacilli isolated from Minas artisanal cheeses produced in Minas Gerais. Ten samples of lactobacilli, formerly isolated from those cheeses, were submitted to the following assays: antimicrobial susceptibility, tolerance to artificial gastric juice and biliary salts, production of hydrogen peroxide and antagonism against pathogenic and non-pathogenic micro-organisms. Only L. plantarum (C0) was sensitive to all tested antimicrobials, while the other LAB samples were resistant to at least one drug. Six samples were tolerant to artificial gastric juice, and L. brevis (A6) even grew in that medium. Three samples were tolerant to biliary salts. Only L. brevis (E35) produced hydrogen peroxide. Difference (P< 0.05) was observed among the means of inhibition haloes of lactobacilli against Enterococcus faecalis ATCC 19433 and Lactobacillus plantarum C24 in spot-on-the-lawn assay. All samples of lactobacilli inhibited Escherichia coli ATCC 25922, Salmonella enterica var. Typhimurium ATCC 14028 in co-culture antagonism test (P< 0.0001). Most lactobacilli samples showed in vitro probiotic potential. From the tested samples, L. brevis (A6) presented the best results considering all in vitro probiotic tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Elisa Maria de Oliveira ◽  
Victor Hugo Gomes Sales ◽  
Marcelo Silva Andrade ◽  
Jerri Édson Zilli ◽  
Wardsson Lustrino Borges ◽  
...  

The objective of this research was to perform screening of biosurfactant-producing bacteria from Amapaense Amazon soils. Floodplain- and upland-forest soils of three municipalities of the Amapá state were isolated and identified. The isolates were cultured in nutrient broth with olive oil, and their extracts were evaluated according to drop collapse, oil dispersion, emulsification, and surface tension tests. From three hundred and eighteen isolates, the 43 bacteria were selected and identified by 16S rDNA gene sequencing, indicating the presence of three different genera, Serratia, Paenibacillus, and Citrobacter. The extracellular biosurfactant production pointed out the 15 most efficient bacteria that presented high emulsification capacity (E24 > 48%) and stability (less than 10% of drop after 72 h) and great potential to reduce the surface tension (varying from 49.40 to 34.50 mN·m−1). Cluster analysis classified genetically related isolates in different groups, which can be connected to differences in the amount or the sort of biosurfactants. Isolates from Serratia genus presented better emulsification capacity and produced a more significant surface tension drop, indicating a promising potential for biotechnological applications.


2021 ◽  
Author(s):  
Renan Eugênio Araujo Piraine ◽  
Gustavo M Retzlaf ◽  
Vitória S. Gonçalves ◽  
Rodrigo C Cunha ◽  
Fabio Pereira Leivas Leite

Abstract Non-conventional yeasts can be isolated from a wide range of environmental sources, often found in beverage industry in mixed fermentations, in which the microorganisms’ inoculum usually is not fully known. It is important to know starter cultures, since in addition to favoring reproducibility, other properties can be discovered. Thus, the objective of this work was to identify and characterize yeasts isolated from environment, evaluating their probiotic potential and possible use in brewery. Isolates were obtained from flowers, fruits, leaves and mixed-fermentation beers, being identified by PCR. Yeasts with promising activity were evaluated regarding their growth under different pHs, temperature and presence of organic acids. To explore probiotic potential, in vitro tests were performed of antimicrobial activity and co-aggregation with food pathogens, auto-aggregation, and survival in simulated gastrointestinal tract conditions. In our study, Pichia kluyveri (LAR001), Hanseniaspora uvarum (PIT001) and Candida intermedia (ORQ001) were selected among 20 isolates. P. kluyveri was the only one that tolerated pH 2.5. Lactic acid was not inhibitory, while acetic acid and incubation at 37 °C had a partially inhibitory effect on yeasts growth. All yeasts tolerated α-acids from hops and NaCl up to 1%. It is suggested that isolates are able to adhere to intestinal cells and influence positively the organism in combating pathogens, as they showed auto-aggregation rates above 99% and antagonistic activity to pathogenic bacteria. The yeasts tolerated gastric environment conditions, however were more sensitive to pancreatic conditions. We conclude that isolated non-conventional yeasts showed probiotic potential and promising application in beer fermentation.


2019 ◽  
Vol 7 (12) ◽  
pp. 709 ◽  
Author(s):  
Jihen Missaoui ◽  
Dalila Saidane ◽  
Ridha Mzoughi ◽  
Fabio Minervini

Microorganisms inhabiting fermented foods represent the main link between the consumption of this food and human health. Although some fermented food is a reservoir of potentially probiotic microorganisms, several foods are still unexplored. This study aimed at characterizing the probiotic potential of lactic acid bacteria isolated from zgougou, a fermented matrix consisting of a watery mixture of Aleppo pine′s seeds. In vitro methods were used to characterize the safety, survival ability in typical conditions of the gastrointestinal tract, and adherence capacity to surfaces, antimicrobial, and antioxidant activities. Strains belonged to the Lactobacillus plantarum group and Enterococcus faecalis showed no DNase, hemolytic, and gelatinase activities. In addition, their susceptibility to most of the tested antibiotics, satisfied some of the safety prerequisites for their potential use as probiotics. All the strains tolerated low pH, gastrointestinal enzymes, and bile salts. They displayed a good antibacterial activity and antibiofilm formation against 10 reference bacterial pathogens, especially when used as a cell-free supernatant. Furthermore, the lactic acid bacteria (LAB) strains inhibited the growth of Aspergillus flavus and Aspergillus carbonarius. Finally, they had good antioxidant activity, although depending on the strain. Overall, the results of this work highlight that zgougou represents an important reservoir of potentially probiotic LAB. Obviously, future studies should be addressed to confirm the health benefits of the LAB strains.


2019 ◽  
Vol 37 (3) ◽  
pp. 255-262
Author(s):  
Reneé Pérez-Pérez ◽  
Maxime Oudot ◽  
Lizette Serrano ◽  
Ionel Hernández ◽  
María Nápoles ◽  
...  

Rhizobia have been studied for the symbiosis that they establish with the roots of legumes. However, the colonization and promotion of growth in non-leguminous plants has also been demonstrated. The aim of this work was the biochemical and molecular identification of rhizosphere rhizobia present inthe rhizosphere of two commercial maize cultivars. Cultivableisolates were obtained in yeast-mannitol-agar (YMA) mediumfrom rhizospheric soil and the rhizoplane. The cultural (size,color, mucus, etc.), morphological, and staining (cell shape,response to staining and sporulation) characteristics weredetermined as well as isolate responses to eight biochemicaltests (acid-base production, citrate, oxidase, catalase, H2Sproduction, urease, gelatinase and the oxidative-fermentativeassay) that are valuable for rhizobia identification. The genuswas determined by 16S rDNA gene sequencing. We obtained 81total isolates of which 30.86% showed the cultural, morphological and staining characteristics expected for rhizobia and only 20% of these corresponded to the genus Rhizobium.


Agriculture ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Zhe Wu ◽  
Shengyang Xu ◽  
Ying Yun ◽  
Tingting Jia ◽  
Zhu Yu

In this study, an experiment was performed to evaluate the effect of lactic acid bacteria and 3-phenyllactic acid (PLA) on the fermentation quality and chemical composition of alfalfa silage. Several PLA-tolerant strains were screened from silages and identified. The selected strains (1 × 106 colony forming units/g fresh alfalfa) and PLA (1.0, 2.0, or 3.0 g/kg) were applied to alfalfa before ensiling. After 45 days of storage, the silages were unsealed and subjected to component analysis. Biochemical methods and 16S rDNA gene sequencing were used for the identification of the two strains as Lactobacillus plantarum. The characteristics of chemical and fermentation compounds indicated that PLA and the two strains efficiently improved the quality of the alfalfa silage. It can be concluded that the use of the strains and PLA can significantly improve the quality of silage.


Sign in / Sign up

Export Citation Format

Share Document