scholarly journals Effect of Chitosan Coatings with Cinnamon Essential Oil on Postharvest Quality of Mangoes

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3003
Author(s):  
Kaibo Yu ◽  
Jing Xu ◽  
Lei Zhou ◽  
Liqiang Zou ◽  
Wei Liu

Mango (Mangifera indica Linn.) is a famous climacteric fruit containing abundant flavor and nutrients in the tropics, but it is prone to decay without suitable postharvest preservation measures. In this study, the chitosan (CH)-cinnamon essential oil (CEO) Pickering emulsion (CH-PE) coating was prepared, with cellulose nanocrystals as the emulsifier, and applied to harvested mangoes at the green stage of maturity. It was compared with a pure CH coating and a CH-CEO emulsion (CH-E) coating, prepared with the emulsifier Tween 80. Results showed that the CH-PE coating had a lower water solubility and water vapor permeability than the other coatings, which was mainly due to electrostatic interactions, and had a better sustained-release performance for CEO than the CH-E coating. During mango storage, the CH-PE coating effectively improved the appearance of mangoes at 25 °C for 12 d by reducing yellowing and dark spots, and delayed water loss. Hardness was maintained and membrane lipid peroxidation was reduced by regulating the activities of pectin methyl esterase, polygalacturonase, and peroxidase. In addition, the nutrient quality was improved by the CH-PE coating, with higher contents of total soluble solid, titratable acid, and ascorbic acid. Therefore, the CH-PE coating is promising to comprehensively maintain the postharvest quality of mangoes, due to its enhanced physical and sustained-release properties.

2018 ◽  
Vol 16 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Rabeya Akter Sarmin ◽  
Shamim Ahmed Kamal Uddin Khan ◽  
Kanij Fatema ◽  
Sabiha Sultana

The study was carried out to minimize the postharvest loses and extend shelf life of mango fruitby maintaining physico-chemical properties. The variety selected for the study was “Amrapali”. Freshly harvested mango was treated with different concentrations (20% and 40%) of neem leaf and banana pulp extract alone or in combination. Untreated mango was considered as control. All treated and untreated mango was kept into paper cartons at room condition. The treated fruits showed significant differences in case of total soluble solids content, titratable acidity, vitamin C, disease incidence, disease severity and shelf life in comparison to control fruits. Among the treatments, T2 (neem leaf extract at 20%) and T5 (neem leaf extract 40% + banana pulp extract 40%) treatments showed longer shelf life (9.92 and 10.25 days, respectively), slower changes in color (score 2.77 and 2.93, respectively) and firmness (score 2.67 and 2.77, respectively); less disease severity (score 2.93 and 3.57, respectively), disease incidence (46.67% and 60.00%) and lower loss in weight (38.04% and 35.17%, respectively) at 9 DAT (Days after treatment). On the other hand, total soluble solid was highest in T3 (neem leaf extract 40%) treated fruitswith18.73% more Brix at 13 DAT in comparison to control and other treatments. The effectiveness of the treatment T5 (neem leaf extract 40% + banana pulp extract 40%) was meaningful which could be recommended for maintenance of postharvest quality of mango stored in ambient conditions. J. Bangladesh Agril. Univ. 16(3): 343–350, December 2018


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1831 ◽  
Author(s):  
Renata M. Sumalan ◽  
Raufdzhon Kuganov ◽  
Diana Obistioiu ◽  
Iuliana Popescu ◽  
Isidora Radulov ◽  
...  

There is an increasing interest in developing natural methods to replace the current chemicals used for maintaining postharvest quality of citrus fruits. The essential oil antifungal activity of mint (MEO), basil (BEO), and lavender (LEO) acting as the vapor-phases was tested against Penicillium digitatum. The minimum doses with fungistatic and fungicidal effect, in vitro, acting as the vapor-phases, were set up. The minimum fungicidal dose was 300 μL for BEO and 350 μL LEO, while for MEO only minimal dose with fungistatic effect was reached. The IC50 values were calculated and used (v/v) for testing preservation of lemon fruits, in close space enriched in vapor oil. For this purpose, the following two independent in vivo experiments were carried out: experiment 1, inoculated lemons with P. digitatum stored without chemical treatments 7 days, at 22 ± 2 °C, at two concentrations (C1—IC50 equivalent; C2—half of C1); and experiment 2, the non-inoculated lemons kept under the same conditions and concentrations of EO vapor served to evaluate the lemon quality properties. The results showed that antifungal protective effect was provided in the order of LEO-C1 > BEO-C1 > MEO-C1 > BEO-C2 > MEO-C2 > LEO-C2. The quality indicators like weight loss, pH, and firmness were not negatively influenced.


2016 ◽  
Vol 209 ◽  
pp. 214-220 ◽  
Author(s):  
Lucimara Nazaré Silva Botelho ◽  
Denise Alvarenga Rocha ◽  
Mariana Aparecida Braga ◽  
Aline Silva ◽  
Celeste Maria Patto de Abreu

LWT ◽  
2020 ◽  
Vol 123 ◽  
pp. 109089 ◽  
Author(s):  
M.A. Istúriz-Zapata ◽  
M. Hernández-López ◽  
Z.N. Correa-Pacheco ◽  
L.L. Barrera-Necha

LWT ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 519-526 ◽  
Author(s):  
Jing Hu ◽  
Xuge Wang ◽  
Zuobing Xiao ◽  
Wencheng Bi

2020 ◽  
Vol 4 (4) ◽  
pp. 11-15
Author(s):  
Gonchikari Lokesh ◽  
C Madhumathi ◽  
M Rama Krishna ◽  
B Tanuja Priya ◽  
Lalitha Kadiri

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 815G-815
Author(s):  
G.A. Picchioni ◽  
A.E. Watada ◽  
W.S. Conway ◽  
B.D. Whitaker ◽  
C.E. Sams

Postharvest CaCl2 pressure infiltration improves firmness and storage quality of apples but is still in the experimental stages. Its effectiveness could be increased if we had a better understanding of how Ca affects the tissue at the cellular level. `Golden Delicious' fruit were harvested from a commercial orchard and were pressure-infiltrated with CaCl2 (0%, 2%, or 4% w/v), stored for 6 months at 0C, and then for 7 days at 20C. Between harvest and the end of storage at 20C, the net breakdown of galactolipids and phospholipids decreased with increasing CaCl2 in infiltration solutions. During 0C storage, CaCl2-infiltrated fruit maintained greater concentrations of conjugated sterol lipids, and these lipid classes are thought to be closely associated with the plasma membrane. As membrane lipid alterations are viewed as a central factor in the senescence of fruits, Ca (from postharvest infiltration) may serve a major role in regulating fruit quality losses through its interactions with cell membranes.


Sign in / Sign up

Export Citation Format

Share Document