scholarly journals Modified QuEChERS Extraction and HPLC-MS/MS for Simultaneous Determination of 155 Pesticide Residues in Rice (Oryza sativa L.)

Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Maria Graça Melo ◽  
Ana Carqueijo ◽  
Andreia Freitas ◽  
Jorge Barbosa ◽  
Ana Sanches Silva

Rice (Oryza sativa L.) is the staple food of more than half of the world’s population. The main factors affecting the quality of rice include grain length, texture, stickiness, flavor, and aroma. Pesticides are intended for the protection of plant products from weeds, fungi, or insects. However, pesticides also result in negative effects such as environment disturbances, pest resistance and toxicity to both users and food consumers. The aim of this study was to conduct validation experiments of a method for the determination of multi-pesticides in rice, a model food of other cereals. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was used for the extraction of pesticide residues from rice followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with a triple quadrupole instrument using electrospray ionization. The analytical method has chromatography-tandem according to SANTE/11813/2017. The limit of quantification was 5 μg/kg. Recoveries for the 155 analyzed pesticides ranged between 77.1% for pirimiphos-ethyl and 111.5% for flutriafol and they were determined at 3 spiking levels. The proposed method was demonstrated to be quick, simple, precise, and accurate and allowed for evaluating the compliance of cereals samples with legislated maximum residue levels of pesticides in the European Union.

2018 ◽  
Vol 16 (1) ◽  
pp. 81-93
Author(s):  
MDH Prodhan ◽  
SN Alam

Determination of organochlorine pesticide residues in shrimp is very important to ensure the consumer’s safety and to fulfill the importer’s demand. Therefore, a simple and efficient multiple organochlorine pesticide residues analytical method using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction technique and Gas Chromatography coupled with Electron Capture Detector (ECD) has been developed and validated for the determination of 19 organochlorine pesticides (α- BHC, δ- BHC, β- BHC, γ- BHC, Heptachlor, Aldrin, Heptachlor Epoxide, γ- Chlordane, α- Chlordane, α- Endosulfan, 4,4 DDE, Dieldrin, Endrin, 4,4 DDD, β- Endosulfan, 4,4 DDT, Endosulfan sulphate, Methoxychlor, and Endrin Ketone) in shrimp. The method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD) and limit of quantification (LOQ). The average recoveries of the selected pesticides ranged from 84% to 106% with RSDr ≤ 14% in four fortification levels of 0.05, 0.1, 0.2 and 0.3 mg kg-1. The linearity was ≥ 0.996 for all of the selected pesticides with matrix matched calibration standards. The LOD ranged from 0.003 to 0.009 mg kg-1 and the LOQ was 0.05 mg kg-1. This method was applied successfully for the residue analysis of 40 shrimp samples collected from different regions in Bangladesh.SAARC J. Agri., 16(1): 81-93 (2018)


2020 ◽  
Vol 11 (1) ◽  
pp. 985-992
Author(s):  
Hymavati Muppalla ◽  
Kiranmayi Peddi

The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers across the globe. The aim of the present study was to assess the level of pesticide residues in Okra in India. A multi-residue method for the quantification of fifty-four pesticides in okra is described in this work. The present study employed a modified quick, easy cheap, effective rugged and safe (QuEChERS) extraction procedure followed by UHPLC-MS/MS (Ultra-High-Performance Liquid Chromatography coupled to Tandem Mass Spectrometry) analysis. Validation of the method was according to the guidelines given by European Union SANCO/12571/2013. The levels of validation were 10.0, 50.0 and 100 µg kg-1. The following parameters such as linearity, the limit of detection (LOD) (nearer to 0.005 mg kg-1) and limit of quantification (LOQ) (nearer to 0.01 mg kg-1) were set to be acceptable. The trueness of the method for 54 pesticides in all Okra commodities was between 80-110% with satisfactory repeatability and within-run reproducibility except for the pesticide residues such as Thiamethoxam and Fenamidone. The measurement of uncertainty for each of the pesticide was below 50% and was estimated to be in the range of 5.37% - 10.71%, which meets the criteria established in the SANCO/12571/2013 document (European Union, 2013). This method is concluded to be applicable for the determination of pesticide residues in Okra.


2010 ◽  
Vol 93 (4) ◽  
pp. 1169-1179 ◽  
Author(s):  
David Steiniger ◽  
Guiping Lu ◽  
Jessie Butler ◽  
Eric Phillips ◽  
Yolanda Fintschenko

Abstract The pesticide residues in exported and imported tea products must not exceed the maximum residue limits (MRLs) regulated by the import countries. Tea is a complex matrix that obfuscates the determination of pesticide residues. Many available methods for multiresidue pesticide analysis of tea are time-consuming and require many cleanup steps. The objective of this study was to develop a simple multiresidue method by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and ion-trap GC/MS/MS, which can identify, confirm, and quantify pesticides in complex matrixes. A tea product was homogenized with water, and the pesticides were extracted with acetonitrile containing 1 acetic acid. The extract was subjected to centrifugation, initial cleanup with dispersive SPE (dSPE), solvent exchange, and final cleanup with dSPE. Diethyl-d10-parathion and triphenyl phosphate were used as the internal standard and surrogate, respectively. The final extract was injected into an ITQ 700 gas chromatograph/mass spectrometer. Quantitation of individual pesticides was based on matrix-matched calibration curves with a correlation coefficient of >0.9930 for the 22 pesticides selected for the study. The recoveries of the 22 pesticides ranged from 78 to 115, except those for diazinon (130) and malathion (122), with an average RSD of 8.7. The LOD values of all of the pesticides, except for terbufos, were below the MRLs set by the European Union and Japan.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Naghi Saadatjou ◽  
Shahab Shariati ◽  
Mostafa Golshekan

A simple and high sensitive preconcentration method based on micelle-mediated extraction followed by high performance liquid chromatography (LC-UV) was developed for preconcentration and determination of trace amounts of bisphenol A (BPA) in aqueous samples. The BPA was quantitatively extracted from aqueous samples in the presence of Triton X-114 as a nonionic surfactant and preconcentrated into the small volume (about 30 μL) of the surfactant-rich phase. Taguchi method, an orthogonal array design (OA16 (45)), was utilized to optimize the various factors affecting the micellar extraction of BPA. The maximum extraction efficiency of BPA was obtained at pH 3, 0.2% (w/v) Triton X-114, and 0.25 mol L−1 sodium acetate. For the preconcentration, the solutions were incubated in a thermostatic water bath at 50°C for 7 min. After centrifuge and separation of aqueous phase, the surfactant-rich phase was diluted with 100 μL acetone and injected in the chromatographic system. Under the optimum conditions, preconcentration factor of 34.9 was achieved for extraction from 10 mL of sample solution and the relative standard deviation (RSD%) of the method was lower than 6.6%. The calibration curve was linear in the range of 0.5–150 μg L−1 with reasonable linearity (r2>0.9987). The limit of detection (LOD) based on S/N = 3 was 0.13 μg L−1 for 10 mL sample volumes. The limit of quantification (LOQ) based on S/N = 10 was 0.43 μg L−1 for 10 mL sample volumes. Finally, the applicability of the proposed method was evaluated by the extraction and determination of BPA in the real samples, and satisfactory results were obtained.


2018 ◽  
Vol 67 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Lenche Velkoska-Markovska ◽  
Biljana Petanovska-Ilievska ◽  
Aleksandar Markovski

Summary The modern apple production involves the use of large amounts of pesticides that can be found in processed products such as apple juice. Harmful effects of pesticide residues on humans, especially children, are well known, hence the content of pesticide residues in fruit, vegetables and their juices should be controlled. This study presents an application of a new, relatively simple and reliable analytical method for qualitative and quantitative determination of three organophosphorus and one organonitrogen pesticide residues in apple juices. The analysis utilizes reversed-phase high-performance liquid chromatography (RP-HPLC) followed by UV diode array detection. Prior to HPLC analysis, a solid-phase extraction (SPE) was used for analytes concentration and sample clean-up. Specificity, selectivity, linearity, precision, accuracy and limit of quantification (LOQ) were examined to assess the validity of the developed method. The method had satisfactory values of multiple correlation coefficients for calibration curves (R2 ≥ 0.95 ). The precision was evaluated for the retention times and peak areas, and the estimated values for relative standard deviations (RSD) were 0.05 % - 0.18 % and 0.09 % - 0.62 %, respectively, which indicated an excellent precision of the proposed method. Under the established conditions, the recovery of analytes was 93.80 % - 119.41 %, with relative standard deviations below 0.56 %. This method was successfully applied for determination of some organophosphorus and organonitrogen pesticide residues in apple juices which were taken from Macedonian markets. The achieved values for LOQs were low enough compared to the MRLs of the investigated pesticides in apple according to the Regulation (EC) No 396/2005. Detectable residues of the examined pesticides were not found in the analyzed samples.


2016 ◽  
Vol 19 (3) ◽  
pp. 559-565 ◽  
Author(s):  
E. Kowalczyk ◽  
E. Patyra ◽  
A. Grelik ◽  
K. Kwiatek

Abstract A high performance liquid chromatography combined with fluorescence detection (HPLC-FLD) method was developed for determination of five ergot alkaloids (EA): ergometrine, ergotamine, ergocornine, ergocrypine and ergocristine in animal feedingstuffs. The method was based on the application of QuEChERS salts for extraction and modified QuEChERS dispersive SPE for the cleanup step. Alkaloids separation was performed on a C18, 250 mm x 4.6 mm, 5 μm column with the mobile phase containing ammonium carbonate and acetonitrile. The excitation and emission wavelengths were 330 and 420 nm respectively. The method was validated according to the Commission Decision 2002/657/EC and all parameters are in agreement with the requirements of the Decision. Linearity was determined for the concentration range of 25-400 μg/kg. The coefficient of determination (R2) for all curves was from 0.985 to 0.996. The limit of detection (LOD) was in the range 3.23 to 6.53 μg/kg and the limit of quantification (LOQ) from 11.78 to 13.06 μg/kg. The decision limit (CCα) ranged from 29.56 to 43.08 μg/kg and detection capability (CCβ) from 40.65 to 51.01 μg/kg. The highest coefficient of variation (CV) for repeatability was 14.3% and for reproducibility 15.4%.


Author(s):  
Diego Rocha ◽  
Leonardo de Souza ◽  
Mary Ane Lana ◽  
Thaís da Silva ◽  
Débora de Assis

A quantitative and confirmatory method for detecting the presence of triphenylmethane dyes in shrimp muscle using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and a quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction approach was validated. The method exhibited linearity and selectivity and the coefficient of determination (R2) was higher than 0.95 for all studied analytes. Limits of detection (LODs) varied from 0.32 to 0.44 µg kg-1 and the limit of quantification (LOQ) was determined to be 0.5 µg kg-1 for all studied analytes. The trueness, precision, decision limits (CCα), detection capability (CCβ) and uncertainty presented adequate performance. In addition to the validation in shrimp muscle, fish and salmon muscle were also satisfactory validated as an extension of scope. The suitability of the proposed method was also evaluated through an interlaboratory proficiency test, in which satisfactory results were obtained. The fully validated method is thus suitable for the analysis of triphenylmethane dyes in shrimp, fish, and salmon muscle.


Sign in / Sign up

Export Citation Format

Share Document