scholarly journals Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients

Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Débora A. Campos ◽  
Tânia B. Ribeiro ◽  
José A. Teixeira ◽  
Lorenzo Pastrana ◽  
Maria Manuela Pintado

Industrial by-products are produced every day through fruit processing industries. Pineapple is not an exception; when processed, around 60% (w/w) of its weight are peels, stem, trimmings, and crown, the only used fruit part for human consumption. Due to high concerns of sustainability in the food system and negative high impact of human practice in the environment, a strategy has to be developed. Therefore, a green chemistry approach was applied to pineapple by-products to make an integrated valorization by the extraction of bioactive molecules. Two pineapple by-products (peels and stems) were studied, applying a green chemistry approach, which means the non-use of organic solvents or extreme methodologies. A subdivision of each by-product was done by the application of a juice machine. The peels and stems in the fresh state were ground separately, creating two fractions for each by-product—a juice and a wet pulp (press cake). The press cake was characterized, dried, and ground to create a fine powder flour. To the juice, a precipitation methodology with polysaccharides was applied, which allowed the bromelain separation (developing of an enzymatic fraction) from the fruit juice. The enzymatic extract was freeze-dried, and the juice was spray-dried, developing two more fine powders. Thus, three new ingredients were produced from each by-product, creating a total of six new ingredients. Overall, the enzymatic fractions represented around 0.26% (w/w) of pineapple weight. Pineapple stem juice represented 4.8% (w/w), and peel juice represented 17.3% (w/w). Pineapple stem flour represented 3.1% (w/w), and peel flour represented 11.4% (w/w) of the total pineapple weight. To valorize the by-products juices, a full characterization was performed of bioactive molecules and biological activities. When comparing the two juices, the peel juice showed lower content of total phenolic compounds, lower antioxidant capacity, and lower content of vitamin C. The different phenolic compounds were identified by HPLC analysis in the two pineapple by-products juices. However, the same compounds in both juices were quantified (chlorogenic, caffeic, and ferulic acids). On the other hand, the by-products flours had a high content of insoluble dietary fiber (IDF), mainly cellulose and hemicellulose. Therefore, the approach applied in this work opens the door to the production of green products, as a result of by-products valorization. This could be applied not only in the food industry but also in the nutraceutical and cosmetic industries.

2020 ◽  
Vol 38 (No. 6) ◽  
pp. 347-358
Author(s):  
Evzen Šárka ◽  
Marcela Sluková ◽  
Petra Smrčková

Phenolic compounds are linked to a number of health benefits, including antioxidant, antibacterial, antiglycaemic, antiviral, anticarcinogenic, anti-inflammatory and vasodilatory properties. To improve a great loss of phenolics during extrusion, researchers have investigated incorporating functional ingredients into the extrusion input mixture. Other reasons for the addition of active ingredients are the re-use of by-products from food technology, decreasing the calorie content of extruded food, inhibition of starch digestion, and the colour change of the gluten-free products. The paper presents 28 examples of new designs for extrusion based on rice, corn, cassava, sorghum, and lentil flours and on other crops, together with the analyses of phenolics. The present results show the highest total phenolic content in sorghum among cereals, and lentil flour and orange peel powder among mixtures for extrusion to prepare extrudates. The highest content of total flavonols was found in the mixture containing corn and freeze-dried red and purple potatoes.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Francesco Cairone ◽  
Stefania Cesa ◽  
Alessia Ciogli ◽  
Giancarlo Fabrizi ◽  
Antonella Goggiamani ◽  
...  

The aim of this work was to develop innovative and sustainable extraction, concentration, and purification technologies aimed to recover target substances from corn oil, obtained as side stream product of biomass refineries. Residues of bioactive compounds such as carotenoids, phytosterols, tocopherols, and polyphenols could be extracted from this matrix and applied as ingredients for food and feeds, nutraceuticals, pharmaceuticals, and cosmetic products. These molecules are well known for their antioxidant and antiradical capacity, besides other specific biological activities, generically involved in the prevention of chronic and degenerative diseases. The project involved the development of methods for the selective extraction of these minor components, using as suitable extraction technique solid phase extraction. All the extracted and purified fractions were evaluated by NMR spectroscopic analyses and UV–Vis spectrophotometric techniques and characterized by quali-quantitative HPLC analyses. TPC (total phenolic content) and TFC (total flavonoid content) were also determined. DPPH and ABTS radical were used to evaluate radical quenching abilities. Acetylcholinesterase (AChE), amylase, glucosidase, and tyrosinase were selected as enzymes in the enzyme inhibitory assays. The obtained results showed the presence of a complex group of interesting molecules with strong potential in market applications according to circular economy principles.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 942
Author(s):  
Emilie Isidore ◽  
Hamza Karim ◽  
Irina Ioannou

Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2177 ◽  
Author(s):  
Mariem Saada ◽  
Hanen Falleh ◽  
Marcelo Catarino ◽  
Susana Cardoso ◽  
Riadh Ksouri

This work focuses on the variability of Retama raetam (Forssk.) Webb bioactive compounds as a function of the plant cycle. The main results showed that it exhibited the highest percentage of polyunsaturated fatty acids, along with superior levels of vitamin C and total phenolic compounds (66.49%, 645.6 mg·100 g−1 FW and 23.9 mg GAE·g−1, respectively) at the vegetative stage. Instead, at the flowering and mature fruiting stages, R. raetam (Forssk.) Webb exhibited notable contents of proline (25.4 μmol·g−1 DW) and carotenoids (27.2 μg·g−1 FW), respectively. The gathered data concerning the antioxidant activity highlighted the effectiveness of the vegetative stage in comparison to the other periods. Actually, IC50 and EC50 values of the hydromethanolic extract obtained from the plant shoots at the vegetative stage were of 23, 380, 410, 1160 and 960 μg·mL−1 (DPPH• and ABTS•+ radicals scavenging activity, reducing power, chelating power and β-carotene bleaching activity, respectively). Furthermore, the four studied stages showed appreciable antibacterial capacities against human pathogens with a higher efficiency of the vegetative stage extract. Finally, the LC-DAD-ESI/MSn analysis revealed the predominance of isoflavonoids as main class of phenolic compounds and demonstrates that individual phenolic biosynthesis was clearly different as a function of plant growth. These findings highlight that reaching the optimum efficiency of R. raetam (Forssk.) Webb is closely linked to the physiological stage.


Nova Scientia ◽  
2020 ◽  
Vol 12 (24) ◽  
Author(s):  
Rey David Vargas Sánchez ◽  
Evelin Martínez Benavidez ◽  
Javier Hernández ◽  
Gastón Ramón Torrescano Urrutia ◽  
Armida Sánchez Escalante

In this study the effect of pollen source (mesquite and catclaw) on the sensory characteristics (appearance, color, aroma, taste, consistency and visible impurities), and physicochemical properties of raw propolis, and the phenolic content and biological activities of propolis extracts (PEs) was determined. The phenolic composition of PEs was determined by the total phenolic (TPC), flavone and flavonol (FFC), and flavanone and dihydroflavonol content (FDC). The individual phenolic components were analyzed by HPLC-DAD. The antioxidant activity was determined by the ferric-reducing power (FRAP) and free-radical scavenging activity (FRS). The antibacterial activity was evaluated against Gram-positive (Staphylococcus aureus and Listeria innocua) and Gram-negative (Echerichia coli and Salmonella thyphimurium) bacteria. The results showed that sensory characteristic and physicochemical properties of mesquite and catclaw propolis complied with international quality regulations. Fifteen phenolic compounds were identified, of which pinocembrin, naringenin, galangin, chrysin and quercetin were found a high concentration (> 3 mg/g). Mesquite propolis had the highest phenolic content (TFC and FDC), as well as antioxidant activity (> 2.5 mg Fe (II) equivalent/g; > 40% of DPPH radical inhibition) and antibacterial activity against Gram-positive bacterias in the order S. aureus > L. innocua (> 50% of inhibition for both bacterias at 500 µg/mL). These results indicating that pollen source affect the sensory characteristics and physicochemical properties of propolis, as well as the biological activity of their extracts.


2018 ◽  
Vol 46 (2) ◽  
pp. 449-456 ◽  
Author(s):  
Hacer COKLAR ◽  
Mehmet AKBULUT ◽  
Semih KILINC ◽  
Ali YILDIRIM ◽  
Iliasu ALHASSAN

Flowers, leaves and fruits of hawthorn plant are traditionally used for treating diseases like hypertension and atherosclerosis. The medicinal effects of the plant are generally attributed to its phenolic compounds. However, the fruits are perishable materials because of their high content of water, and generally dried and stored to be used outside its season. The main aim of this research was to investigate the effect of different drying methods on phenolic compounds of the hawthorn fruit. Fruits were collected from the wild growing trees in Turkey. De-seeded fruits were dried in freeze-, oven- (60 oC) and microwave pretreated oven drying (microwave application for 5 min at 360 W before drying at 60 oC) methods and analyzed for antioxidant activity, phenolic compounds, total phenolic content and color parameters. Total phenolic content of fresh hawthorn fruits was found as 13.36 mg g-1 DW. Oven- and microwave pretreated oven drying methods had a reductive effect on total phenolic content and antioxidant activity of fruits when compared to freeze drying method. (-)-Epicatechin (994.10 mg kg-1 DW), rutin (765.30 mg kg-1 DW), and procyanidin B2 (553.80 mg kg-1 DW) were the main phenolics of the fruit. Lowest values of these three compounds were observed in oven-dried fruits. Microwave pretreatment oven drying method resulted in browner product. Although the highest phenolic concentration and antioxidant activity were occurred in freeze-dried sample, microwave pretreatment before oven drying could be applied to reduce the time and cost of drying in terms of phenolic compounds and antioxidant activity.


2011 ◽  
Vol 41 (7) ◽  
pp. 1233-1238 ◽  
Author(s):  
Gustavo Scola ◽  
Virginia Demarchi Kappel ◽  
José Claudio Fonseca Moreira ◽  
Felipe Dal-Pizzol ◽  
Mirian Salvador

There are many studies about the biological activities of Vitis vinifera grape seeds, which are rich in phenolic compounds, known by their several health beneficial effects. However, until now there is no data about biological activities of the seeds of V. labrusca, specie found in South and North America. Every year, the global wine production (around 260 million hL) generates about 19.5 million ton of wastes, which are usually discarded in the environment. The aim of this research was to evaluate the antioxidant and anti-inflammatory activities of aqueous extracts of seeds from wine wastes of Vitis labrusca (cv. 'Bordo' and 'Isabella'). Both extracts showed significant antioxidant and anti-inflammatory activities, which are positively correlated with total phenolic content, suggesting that these compounds might be the major contributors to the biological activity of these extracts. These results indicate that water extraction from winery wastes is an option to obtain phenolic compounds with antioxidant and anti-inflammatory activities helping to maintain environmental balance.


2020 ◽  
Vol 23 ◽  
Author(s):  
Penha Patrícia Cabral Ribeiro ◽  
Francisco Canindé de Sousa Júnior ◽  
Cristiane Fernandes de Assis ◽  
Bruno Oliveira de Veras ◽  
Carlos Eduardo de Araújo Padilha ◽  
...  

Abstract The objective of the present study was to assess the phenolic compounds and antioxidant capacity of faveleira seed and press cake extracts. Phenolic profiles were assessed by Ultra-High Performance Liquid Chromatography (UHPLC). Furthermore, the Total Phenolic Content (TPC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging were evaluated. The faveleira seed and press cake extracts are sources of natural phenolic compounds in human diet and have potent antioxidant activity. Gallic acid was the predominant phenolic compound in seed and press cake extracts. The study showed that faveleira seed and press cake extracts can be considered functional foods as well as a potential interest to the food industry.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7058
Author(s):  
Dorota Żyżelewicz ◽  
Joanna Oracz ◽  
Martyna Bilicka ◽  
Kamila Kulbat-Warycha ◽  
Elżbieta Klewicka

In this study, the blueberries (BLUB), raspberries (RASB), blackberries (BLCB), pomegranates pomace (POME) and beetroots (BEET) freeze-dried powders were used as the sources of phenolic compounds to enrich different types of chocolates, substituting a part of the sweetener. It was found that 1% addition of fruit or vegetable powders to chocolates increased the content of total phenolic compounds (flavan-3-ols, phenolic acids and anthocyanins) of enriched dark and milk chocolates compared to the control ones dependent on the powder used. Among the enriched chocolates, the chocolates with the addition of BLUB powder were characterized by the highest total polyphenol content. The highest percentage increase (approximately 80%) in the total polyphenol content was observed in MCH chocolate enriched with BLUB powder. Chocolates incorporated with BLUB, RASB, BLCB and POME powders presented a richer phenolic compound profile than control counterparts. The highest DPPH radical-scavenging capacity was exhibited by the DCH98S chocolate enriched with BEET powder. However, the DCH98ESt chocolates enriched with POME and BEET powders demonstrated the highest FRAP values. An electronic nose analysis confirmed the existence of differences between the profiles of volatile compounds of various types of chocolates enriched with fruit or vegetable powders. Thus, the enrichment of dark and milk chocolates with BLUB, RASB, BLCB, POME and BEET powders seemed to be an interesting approach to enhance bioactivity and to enrich the sensory features of various chocolate types.


2019 ◽  
Vol 9 (19) ◽  
pp. 4141 ◽  
Author(s):  
Diana I. Santos ◽  
M. Joana Neiva Correia ◽  
Maria Margarida Mateus ◽  
Jorge A. Saraiva ◽  
António A. Vicente ◽  
...  

Fourier transform infrared (FT-IR) spectroscopy is a physicochemical technique based on the vibrations of a molecule energized by infrared radiation at a specific wavelength range. Abiotic stresses can induce the production of secondary metabolites, increasing bioactivity. The objectives of the study were to evaluate the impact of heat treatments on the bioactivity of pineapple by-products, and whether FT-IR analysis allows understanding of the changes imparted by abiotic stress. The by-products were treated at 30, 40, and 50 °C for 15 min, followed by storage at 5 ± 1 °C for 8 and 24 h. Lyophilized samples were characterized for total phenolic content and antioxidant capacity and analyzed by FT-IR. Thermal treatments at 50 °C reduced the content of phenolic compounds (21–24%) and antioxidant capacity (20–55%). Longer storage time (24 h) was advantageous for the shell samples, although this effect was not demonstrated for the core samples. The principal components analysis (PCA) model developed with the spectra of the pineapple shell samples showed that the samples were grouped according to their total phenolic compounds content. These results allow the conclusion to be drawn that FT-IR spectroscopy is a promising alternative to the conventional chemical analytical methodologies for phenolic and antioxidant contents if there are significant differences among samples.


Sign in / Sign up

Export Citation Format

Share Document