scholarly journals Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Elena Diez-Sánchez ◽  
Antonio Martínez ◽  
Dolores Rodrigo ◽  
Amparo Quiles ◽  
Isabel Hernando

High hydrostatic pressure is a non-thermal treatment of great interest because of its importance for producing food with additional or enhanced benefits above their nutritional value. In the present study, the effect of high hydrostatic pressure processing parameters (200–500 MPa; 1–10 min) is investigated through response surface methodology (RSM) to optimize the treatment conditions, maximizing the phenol content and antioxidant capacity while minimizing microbiological survival, in milkshakes prepared with chokeberry pomace (2.5–10%). The measurement of fluorescence intensity of the samples was used as an indicator of total phenolic content and antioxidant capacity. The results showed that the intensity of the treatments had different effects on the milkshakes. The RSM described that the greatest retention of phenolic compounds and antioxidant capacity with minimum microbiological survival were found at 500 MPa for 10 min and 10% (w/v) chokeberry pomace. Therefore, this study offers the opportunity to develop microbiologically safe novel dairy products of high nutritional quality.

2013 ◽  
Vol 33 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Karina Di Scala ◽  
Antonio Vega-Gálvez ◽  
Kong Ah-Hen ◽  
Yissleen Nuñez-Mancilla ◽  
Gipsy Tabilo-Munizaga ◽  
...  

The aim of this study was to evaluate the influence of high hydrostatic pressure (150, 250, 350, 450, and 550 MPa), applied for 5 minutes, on antioxidant capacity, total phenolic content, color, firmness, rehydration ratio, and water holding capacity of aloe vera gel stored for 60 days at 4 °C. The analyzed properties of the pressurized gel showed significant changes after the storage period. The highest value of total phenolic content was found at 550 MPa. However, a decrease in the antioxidant capacity was observed for all pressurized gel samples when compared to the control sample (p < 0.05). The smallest changes in product color were observed at pressure levels between 150 and 250 MP. The application of high hydrostatic pressure resulted in lower gel firmness, and the lowest value was found at 150 MPa (p < 0.05). On the other hand, the untreated sample showed a greater decrease in firmness, indicating that high pressure processing preserves this property. The application of high hydrostatic pressure exhibited modifications in the food matrix, which were evaluated in terms of rehydration ratio and water holding capacity.


2020 ◽  
Vol 26 (8) ◽  
pp. 706-714 ◽  
Author(s):  
Tâmmila Venzke Klug ◽  
Elena Collado ◽  
Ascensión Martínez-Sánchez ◽  
Perla A Gómez ◽  
Encarna Aguayo ◽  
...  

An innovative cowpea puree containing 78.8% of fresh cowpea seeds was developed. Microwave treatment (8 kW/35 s), high hydrostatic pressure (550 MPa/10 min/23 ℃) or sous vide treatment (80 ℃, 3 min) were assayed as processing techniques. Blended fresh cowpea samples were used as control. Quality changes during 21 days at 5 ℃ were studied. Sous vide samples showed a relevant loss during storage of viscoelastic parameters, like elastic modulus (G′) and viscous modulus (G″), which was also perceived in the sensory evaluation. On the contrary, high hydrostatic pressure and microwave treatments were able to preserve consistency, texture and taste. However, physicochemical properties, mainly colour, were greatly influenced by thermal treatments, although high hydrostatic pressure treatment preserved greenness. Total phenolic content and total antioxidant capacity were more affected by high hydrostatic pressure than by microwave treatments. In conclusion, microwave and high hydrostatic pressure processing treatments seem to be quite interesting techniques to develop legume-based products.


2014 ◽  
Vol 77 (10) ◽  
pp. 1664-1668 ◽  
Author(s):  
TANYA D'SOUZA ◽  
MUKUND KARWE ◽  
DONALD W. SCHAFFNER

Peanut butter has been associated with several large foodborne salmonellosis outbreaks. This research investigates the potential of high hydrostatic pressure processing (HPP) for inactivation of Salmonella in peanut butter of modified composition, both by modifying its water activity as well by the addition of various amounts of nisin. A cocktail of six Salmonella strains associated with peanut butter and nut-related outbreaks was used for all experiments. Different volumes of sterile distilled water were added to peanut butter to increase water activity, and different volumes of peanut oil were added to decrease water activity. Inactivation in 12% fat, light roast, partially defatted peanut flour, and peanut oil was also quantified. Nisaplin was incorporated into peanut butter at four concentrations corresponding to 2.5, 5.0, 12.5, and 25.0 ppm of pure nisin. All samples were subjected to 600 MPa for 18 min. A steady and statistically significant increase in log reduction was seen as added moisture was increased from 50 to 90%. The color of all peanut butter samples containing added moisture contents darkened after high pressure processing. The addition of peanut oil to further lower the water activity of peanut butter further reduced the effectiveness of HPP. Just over a 1-log reduction was obtained in peanut flour, while inactivation to below detection limits (2 log CFU/g) was observed in peanut oil. Nisin alone without HPP had no effect. Recovery of Salmonella after a combined nisin and HPP treatment did show increased log reduction with longer storage times. The maximum log reduction of Salmonella achieved was 1.7 log CFU/g, which was comparable to that achieved by noncycling pressure treatment alone. High pressure processing alone or with other formulation modification, including added nisin, is not a suitable technology to manage the microbiological safety of Salmonella-contaminated peanut butter.


2016 ◽  
Vol 23 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Zamantha Escobedo-Avellaneda ◽  
Izaskun Pérez-Simón ◽  
María Lavilla-Martín ◽  
Ana Baranda-González ◽  
Jorge Welti-Chanes

A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange–strawberry–banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19–64 ℃ during 2–10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 167
Author(s):  
Yi-Yuan Ke ◽  
Yuan-Tay Shyu ◽  
Sz-Jie Wu

Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL−1. In addition, at 10 mg·mL−1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Maja Jeż ◽  
Wioletta Błaszczak ◽  
Kamila Penkacik ◽  
Ryszard Amarowicz

The effect of processing such as high hydrostatic pressure (HHP) (400-600 MPa/15 min) or low pasteurization temperature (LPT) (74°C/2 min) or high pasteurization temperature (HPT) (90°C/1 min) on selected quality parameters of juice obtained from hydroponically cultivated beef tomatoes was investigated. The total polyphenols content (TPC), total phenolic index (TPI), Trolox equivalent antioxidant capacity (ABTS) and ferric reducing antioxidant power (FRAP) were analysed in the fresh and processed juices stored for 0, 7 and 14 days. What is more, colour parameters (L∗,a∗,b∗,∆E), the activity of polyphenol oxidase (PPO) and peroxidase (POD) and microbial stability were also analyzed following the juices storage. Among all the tested samples, the juice exposed to 600 MPa for 15 min showed superior quality. Samples treated with 600 MPa for 15 min and stored for 0, 7 and 14 days had high TPC, TPI, ABTS, FRAP and a∗ values. As demonstrated, these tested samples at the end of the storage period retained 90% and 95% of their polyphenol content and antioxidant capacity, respectively. As in the case of pasteurization, juice processing at 600 MPa for 15 min clearly reduced the activity of food-spoiling enzymes (PPO, POD) as well as the microbial count. The obtained results showed that TPC was significantly and positively correlated with TPI, ABTS and FRAP parameters.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1202 ◽  
Author(s):  
Jana Šic Žlabur ◽  
Nadica Dobričević ◽  
Mladen Brnčić ◽  
Francisco J. Barba ◽  
Jose M. Lorenzo ◽  
...  

In this study, the influence of stevia addition and sonication processing parameters on the phenolic content and profile as well as the steviol glycosides of strawberry juice-based samples was investigated. For this purpose, three matrices—control samples of strawberry juices without green stevia powder (CS), strawberry juices with green stevia powder (JGSP), and sonicated juices with green stevia powder (SJGSP)—were prepared. For sonication purposes, different conditions regarding probe diameters (7 mm and 22 mm), amplitudes (50%, 75%, and 100%), and time (15 min, 20 min, and 25 min) were tested. The results that were obtained upon the measurement of the total phenolic content, total flavonoids, steviol glycosides, and antioxidant capacity showed significant differences according to the matrices evaluated, obtaining overall higher values in the samples with stevia added. Moreover, when sonication was evaluated, it was found that a higher amplitude (100%), a larger probe diameter (22 mm), and a longer sonication period (25 min) led to higher values. Flavones such as luteolin and apigenin were identified and quantified in JGSP and SJGSP, while they were not found in CS. Besides these phenolic compounds, kaempferol, quercetin, pyrogallic acid, 4-methylcatechol, and 4-methoxybenzoic acid were also identified and quantified. Similarly to the total phenolic compounds, total flavonoids, and total antioxidant capacity, an increased amount of these compounds was found in SJGSP, especially after using the most intense sonication conditions. Therefore, the use of sonication together with stevia added could be a useful tool to preserve strawberry juices, increasing at the same time the sweetness and the antioxidant value of the beverages.


2021 ◽  
Vol 27 (3) ◽  
pp. 337-354
Author(s):  
Karen I. Espejel-Sánchez ◽  
◽  
Teodoro Espinosa-Solares ◽  
Benito Reyes-Trejo ◽  
Guillermina Hernández-Rodríguez ◽  
...  

Introduction: Nutritional potential of wild edible mushrooms and loss of their nutraceutical properties during cooking have been little examined. Objective: To evaluate the nutritional content and effect of heat treatment on nutraceutical properties in the wild species Lactarius indigo (Schwein.) Fr. (blue mushroom), Ramaria flava (Schaeff.) Quél. (changle) and Hypomyces lactifluorum (Schwein.) Tul. & C. Tul. (lobster mushroom), collected in temperate pine and oak forests of the Sierra Norte de Puebla. Materials and methods: The mushrooms were collected in the company of “traditional mushroom collectors”. Proximal composition was quantified according to AOAC methods. The effect of heat treatment was evaluated at 50 and 92 °C at 10 to 60 min intervals. Total phenolic content was determined by the Folin-Ciocalteu method and antioxidant capacity by ABTS and FRAP assays. Results and discussion: R. flava and L. indigo had the highest percentages of protein (24.02 %) and crude fiber (14.64 %) on dry basis, respectively. R. flava had the highest phenolic content (4.40 mg gallic acid equivalents per gram dry basis) and the highest antioxidant capacity (23.65 µmol trolox equivalents per gram dry basis). Degradation kinetics of the compounds was first order; H. lactifluorum and R. flava had the highest loss of phenols and antioxidants, respectively. Conclusion: The mushrooms studied showed high nutritional value and retained more than 50 % of their antioxidant properties after thermal processing.


2012 ◽  
Vol 75 (1) ◽  
pp. 169-173 ◽  
Author(s):  
TANYA D'SOUZA ◽  
MUKUND KARWE ◽  
DONALD W. SCHAFFNER

The ability of Salmonella enterica serovars to survive in high fat content, low water activity foods like peanut butter has been demonstrated by large foodborne illness outbreaks in recent years. This study investigates the potential of high hydrostatic pressure processing, including pressure cycling, to inactivate Salmonella inoculated into creamy peanut butter. A cocktail of pathogenic strains of Salmonella Enteritidis PT30, Salmonella Tennessee, Salmonella Oranienburg, Salmonella Anatum, Salmonella Enteritidis PT 9c, and Salmonella Montevideo obtained from peanut butter– and nut-related outbreaks was inoculated (106 to 107 CFU/g) into creamy peanut butter and high pressure processed under five different sets of conditions, which varied from 400 to 600 MPa and from 4 to 18 min. The log CFU reductions achieved varied from 1.6 to 1.9. Control experiments in which Salmonella was inoculated (109 CFU/g) into 0.1% peptone buffer and high pressure processed at 600 MPa for 18 min showed inactivation to below the detection limit of 100 CFU/g, confirming that high pressure processing is effective at destroying Salmonella in high-moisture environments. Pressure cycling under three sets of conditions consisting of pressures from 400 to 600 MPa, 3 to 10 pressure cycles, and hold times of 6 min for each cycle showed reductions similar to those seen in noncycling experiments. The results of our experiments suggest that the peanut butter food matrix facilitates the survival of Salmonella when exposed to high hydrostatic pressure processing.


Sign in / Sign up

Export Citation Format

Share Document