scholarly journals Foodborne Viruses and Innovative Non-Thermal Food-Processing Technologies

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1520
Author(s):  
Andreana Pexara ◽  
Alexander Govaris

In recent years, several foodborne viruses’ outbreaks have been recorded worldwide. Μost of the foodborne viruses have a low infection dose, are stable and can persist and survive in foods for a long time without loss of infectivity. The most important foodborne viruses are: human norovirus (HuNoV), human rotavirus (HRV), hepatitis A virus (HAV), hepatitis E virus (HEV), human astrovirus (HAstV), Aichi virus (AiV), sapovirus (SaV), human adenovirus (HAdV) and enterovirus (EV). In recent years, innovative non-thermal food-processing technologies including high-pressure processing (HPP), cold plasma (CP), ultraviolet light (UV), irradiation and pulsed electric field (PEF) for improving the quality and safety of foods, including foods of animal origin, have been under research. This review presents the recent data on foodborne viruses and reviews the innovative non-thermal technologies for the control of the foodborne viruses in foods.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Alexander Govaris ◽  
Andreana Pexara

High-pressure processing (HPP) is an innovative non-thermal food preservation method. HPP can inactivate microorganisms, including viruses, with minimal influence on the physicochemical and sensory properties of foods. The most significant foodborne viruses are human norovirus (HuNoV), hepatitis A virus (HAV), human rotavirus (HRV), hepatitis E virus (HEV), human astrovirus (HAstV), human adenovirus (HuAdV), Aichi virus (AiV), sapovirus (SaV), and enterovirus (EV), which have also been implicated in foodborne outbreaks in various countries. The HPP inactivation of foodborne viruses in foods depends on high-pressure processing parameters (pressure, temperature, and duration time) or non-processing parameters such as virus type, food matrix, water activity (aw), and the pH of foods. HPP was found to be effective for the inactivation of foodborne viruses such as HuNoV, HAV, HAstV, and HuAdV in foods. HPP treatments have been found to be effective at eliminating foodborne viruses in high-risk foods such as shellfish and vegetables. The present work reviews the published data on the effect of HPP processing on foodborne viruses in laboratory media and foods.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1430
Author(s):  
James S. Chacha ◽  
Liyan Zhang ◽  
Chigozie E. Ofoedu ◽  
Rashid A. Suleiman ◽  
Joachim M. Dotto ◽  
...  

The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.


2021 ◽  
Vol 73 (1) ◽  
pp. 169-178
Author(s):  
M. Alipour Amroabadi ◽  
E. Rahimi ◽  
A. Shakerian ◽  
H. Momtaz

ABSTRACT Foodborne viruses including hepatitis A virus (HAV), norovirus (NoV), rotavirus (RoV) and hepatitis E virus (HEV) are easily transmitted through contaminated seafoods. The current research was done to assess the incidence of RoV, NoV GI and GII,hAV and hEV in fish and shrimp samples caught from the Persian Gulf, Iran. Three-hundred and twenty fish and shrimp samples were collected. The presence of foodborne viruses were assessed by the real-time PCR. Forty-nine out of 320 (15.31%) fish and shrimp samples were positive for foodborne viruses. Distribution of hAV, NoV GI and NoV GII amongst all studied samples were 0.93%, 5.93% and 8.43%, respectively. hEV and RoV viruses were not found in studied samples. Parastromateus niger and Scomberomorus commerson fish and Penaeus monodon shrimp were the most frequently contaminated samples. Simultaneous incidence of hAV and NoV GI and hAV and NoV GII were 0.31% and 0.93%, respectively. Distribution of foodborne viruses in samples collected through spring, summer, autumn and winter seasons were 14.28%, 9.33%, 11.76% and 24.44%, respectively. Findings revealed that the incidence of foodborne viruses was significantly associated with seafood species and also season of sampling.


2013 ◽  
Vol 11 (2) ◽  
pp. 358-370 ◽  
Author(s):  
A. Y. Katukiza ◽  
H. Temanu ◽  
J. W. Chung ◽  
J. W. A. Foppen ◽  
P. N. L. Lens

The presence of viruses in a slum environment where sanitation is poor is a major concern. However, little is known of their occurrence and genomic copy concentration in the slum environment. The main objective of this study was to determine the genomic copy concentrations of human adenoviruses F and G, Rotavirus (RV), Hepatitis A virus (HAV), Hepatitis E virus (HEV) and human adenovirus species A,C,D,E, and F (HAdV-ACDEF) in Bwaise III, a typical slum in Kampala, Uganda. Forty-one samples from surface water, grey water and ground water were collected from 30 sampling locations. The virus particles were recovered by glass wool filtration with elution using beef extract. DNA and RNA viruses were detected by the real time quantitative polymerase chain reaction (qPCR) and the reverse transcription-qPCR (RT-qPCR), respectively. HAdV-F and G were detected in 70.7% of the samples with concentrations up to 2.65 × 101 genomic copies per mL (gc mL−1). RV and HAV were detected in 60.9% and 17.1% of the samples, respectively. The maximum concentration of RV was 1.87 × 102gc mL−1. In addition, 78% of the samples tested positive for the HAdV-ACDEF, but all samples tested negative for HEV. These new data are essential for quantitative microbial risk assessment, and for understanding the effects of environmental pollution in slums.


2011 ◽  
Vol 9 (3) ◽  
pp. 515-524 ◽  
Author(s):  
Laura Guerrero-Latorre ◽  
Anna Carratala ◽  
Jesus Rodriguez-Manzano ◽  
Byron Calgua ◽  
Ayalkibet Hundesa ◽  
...  

Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.


2021 ◽  
Vol 11 (2) ◽  
pp. 686
Author(s):  
Anet Režek Jambrak ◽  
Marinela Nutrizio ◽  
Ilija Djekić ◽  
Sanda Pleslić ◽  
Farid Chemat

With the introduction of Industry 4.0, and smart factories accordingly, there are new opportunities to implement elements of industry 4.0 in nonthermal processing. Moreover, with application of Internet of things (IoT), smart control of the process, big data optimization, as well as sustainable production and monitoring, there is a new era of Internet of nonthermal food processing technologies (IoNTP). Nonthermal technologies include high power ultrasound, pulsed electric fields, high voltage electrical discharge, high pressure processing, UV-LED, pulsed light, e-beam, and advanced thermal food processing techniques include microwave processing, ohmic heating and high-pressure homogenization. The aim of this review was to bring in front necessity to evaluate possibilities of implementing smart sensors, artificial intelligence (AI), big data, additive technologies with nonthermal technologies, with the possibility to create smart factories together with strong emphasis on sustainability. This paper brings an overview on digitalization, IoT, additive technologies (3D printing), cloud data storage and smart sensors including two SWOT analysis associated with IoNTPs and sustainability. It is of high importance to perform life cycle assessment (LCA), to quantify (En)—environmental dimension; (So)—social dimension and (Ec)—economic dimension. SWOT analysis showed: potential for energy saving during food processing; optimized overall environmental performance; lower manufacturing cost; development of eco-friendly products; higher level of health and safety during food processing and better work condition for workers. Nonthermal and advanced thermal technologies can be applied also as sustainable techniques working in line with the sustainable development goals (SDGs) and Agenda 2030 issued by United Nations (UN).


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1538
Author(s):  
Gloria López-Gámez ◽  
Pedro Elez-Martínez ◽  
Olga Martín-Belloso ◽  
Robert Soliva-Fortuny

Fruits and vegetables are rich sources of bioactive compounds and micronutrients. Some of the most abundant are phenols and carotenoids, whose consumption contributes to preventing the occurrence of degenerative diseases. Recent research has shown the potential of non-thermal processing technologies, especially pulsed electric fields (PEF), ultrasounds (US), and high pressure processing (HPP), to trigger the accumulation of bioactive compounds through the induction of a plant stress response. Furthermore, these technologies together with high pressure homogenization (HPH) also cause microstructural changes in both vegetable tissues and plant-based beverages. These modifications could enhance carotenoids, phenolic compounds, vitamins and minerals extractability, and/or bioaccessibility, which is essential to exert their positive effects on health. Nevertheless, information explaining bioaccessibility changes after non-thermal technologies is limited. Therefore, further research on food processing strategies using non-thermal technologies offers prospects to develop plant-based products with enhanced bioaccessibility of their bioactive compounds and micronutrients. In this review, we attempt to provide updated information regarding the main effects of PEF, HPP, HPH, and US on health-related compounds bioaccessibility from different vegetable matrices and the causes underlying these changes. Additionally, we propose future research on the relationship between the bioaccessibility of bioactive compounds and micronutrients, matrix structure, and non-thermal processing.


2020 ◽  
Author(s):  
D. Vandeweyer ◽  
B. Lievens ◽  
L. Van Campenhout

AbstractEdible insects are characterised by high microbial numbers of which the bacterial endospores fraction can survive (thermal) processing. It is unknown, however, which bacterial species occur as endospore in edible insects and what impact they have on food safety. Additionally, edible insects have never been explored for the presence of foodborne viruses so far. In this study, we found that the bacterial endospore fraction in a collection of mealworm and cricket samples obtained from commercial insect producers can comprise a large amount of Bacillus cereus group members that can pose insect or human health risks. Monitoring and effective mitigation of these risks are urged. By contrast, none of the foodborne viruses hepatitis A virus, hepatitis E virus and norovirus genogroup II were detected in the sample collection. Therefore, food safety risks originating from these viral pathogens can be concluded to be low.


2006 ◽  
Vol 69 (4) ◽  
pp. 957-968 ◽  
Author(s):  
STEPHEN F. GROVE ◽  
ALVIN LEE ◽  
TOM LEWIS ◽  
CYNTHIA M. STEWART ◽  
HAIQIANG CHEN ◽  
...  

The overall safety of a food product is an important component in the mix of considerations for processing, distribution, and sale. With constant commercial demand for superior food products to sustain consumer interest, nonthermal processing technologies have drawn considerable attention for their ability to assist development of new products with improved quality attributes for the marketplace. This review focuses primarily on the nonthermal processing technology high-pressure processing (HPP) and examines current status of its use in the control and elimination of pathogenic human viruses in food products. There is particular emphasis on noroviruses and hepatitis A virus with regard to the consumption of raw oysters, because noroviruses and hepatitis A virus are the two predominant types of viruses that cause foodborne illness. Also, application of HPP to whole-shell oysters carries multiple benefits that increase the popularity of HPP usage for these foods. Viruses have demonstrated a wide range of sensitivities in response to high hydrostatic pressure. Viral inactivation by pressure has not always been predictable based on nomenclature and morphology of the virus. Studies have been complicated in part from the inherent difficulties of working with human infectious viruses. Consequently, continued study of viral inactivation by HPP is warranted.


Sign in / Sign up

Export Citation Format

Share Document