scholarly journals Stimuli-Responsive Dual Cross-Linked N-Carboxyethylchitosan Hydrogels with Tunable Dissolution Rate

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 188
Author(s):  
Svetlana Bratskaya ◽  
Anna Skatova ◽  
Yuliya Privar ◽  
Andrey Boroda ◽  
Ekaterina Kantemirova ◽  
...  

Here, we discuss the applicability of (methylenebis(salicylaldehyde)—MbSA) for the fabrication of the stimuli-responsive N-carboxyethylchitosan (CEC) hydrogels with a tunable dissolution rate under physiological conditions. In comparison with non-covalent salicylimine hydrogels, MbSA cross-linking via covalent bis(‘imine clip’) and non-covalent hydrophobic interactions allowed the fabrication of hydrogels with storage moduli > 1 kPa at ten-fold lower aldehyde/CEC molar ratio with the preservation of pH- and amino-acid responsive behavior. Although MbSA-cross-linked CEC hydrogels were stable at neutral and weakly alkaline pH, their disassembly in cell growth medium (Dulbecco’s modified Eagle’s medium, DMEM) under physiological conditions was feasible due to transimination reaction with amino acids contained in DMEM. Depending on the cross-linking density, the complete dissolution time of the fabricated hydrogels varied from 28 h to 11 days. The cytotoxicity of MbSA cross-linked CEC hydrogels toward a human colon carcinoma cell line (HCT 116) and primary human dermal fibroblasts (HDF) was remarkably lower in comparison with CEC-salicylimine hydrogels. Fast gelation, relatively low cytotoxicity, and tunable stimuli-induced disassembly under physiological conditions make MbSA cross-linked CEC hydrogels promising for drug encapsulation and release, 3D printing, cell culturing, and other biomedical applications.

Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


Author(s):  
Shabnam Ain ◽  
V Gupta ◽  
Babita K ◽  
Q Ain ◽  
J Dahiya

Aqueous solubility is a critical factor for optimum drug delivery. In the present study, we investigated the potential of drug-cyclodextrin complexation as an approach for improving the solubility and bioavailability of famotidine, an H2-receptor antagonist and acid reducing drug which has poor solubility and bioavailability. Solubility improvement of drug by β-cyclodextrin was done by simple complexation approach using physical, kneading and co-precipitation methods and compared with physical mixture. Phase solubility profile indicated that the solubility of famotidine was significantly increased in presence of β-cyclodextrin and shows a linear graph with β-cyclodextrin indicating formation of inclusion complexes in a 1:1 molar ratio. β-Cyclodextrin-famotidine mixture have maximum stability constant 1477.6 M-1. The inclusion complex ratio 1:1 of kneading mixture was selected based on drug release profile and compared with physical mixture. Further characterization was done by  using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to identify the physicochemical interaction between drug and carrier and its effect on dissolution. Dissolution rate studies for selected inclusion complex was performed in 0.1 N HCl (pH 1.2), phosphate buffer (pH 7.5) and distilled water (pH 6.8) and compared these to pure drug profile which was found to be 2.34 fold increase in distilled water, 1.83 fold in HCl and 2.01 fold in phosphate buffer (pH 7.5). These results suggest that the kneaded complex of famotidine with β-cyclodextrin as hydrophilic complexation agent can substantially enhance the solubility and dissolution rate. Such complex has promising potential to improve the bioavailability of famotidine.  


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Teodora Balaci ◽  
Bruno Velescu ◽  
Oana Karampelas ◽  
Adina Magdalena Musuc ◽  
George Mihai Nițulescu ◽  
...  

The aim of our study was to obtain rutoside (RUT) inclusion complexes in β-cyclodextrin (β-CD) and in hydroxypropyl-β-cyclodextrin (HP-β-CD), in a 1:1 molar ratio, using the lyophilization method of complexation in solution. The complexes were confirmed and characterized, in comparison with the raw materials and their simple physical mixtures, by SEM, DSC, and FT-IR analyses. The antioxidant activity of the compounds was assessed by using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2’-azino-bis(3-ethylbenzothiazolin-6-sulfonic) acid (ABTS) radicals, determining the radical scavenging activity, and by ferric reducing antioxidant power (FRAP) assay. The results revealed superior antioxidant ability for the inclusion complexes towards rutoside alone. The inclusion complexes were used as active ingredients in formulations of immediate-release tablets. The preformulation studies were performed on the powders for direct compression obtained after mixing the active ingredients with the excipients (Avicel PH 102, Polyplasdone XL-10, magnesium stearate, and talc). The materials were assessed for particle size, flowability, compressibility, and moisture content, establishing they are suitable for a direct compression process. The tablets were characterized regarding their pharmaco-technical properties and the results proved that the formulations lead to high-quality delivery systems, showing a good mechanical resistance with a low friability, excellent disintegration times, and satisfying dissolution rate. The performances were very similar for both formulations and the physico-mechanical properties of the tablets are not influenced by type of the used cyclodextrin, but the RUT- HP-β-CD tablets presented a higher dissolution rate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Venkata Deepthi Vemuri ◽  
Srinivas Lankalapalli

Abstract Background The meager physicochemical properties like low solubility and low dissolution rate of rosuvastatin calcium remain as an obstruction for formulation development. In the present work, we explore the evolution of rosuvastatin cocrystal, which may offer the synergetic physico-chemical properties of the drug. Cocrystal crafting depends on two possible intermolecular interactions; heteromeric and the homomeric selection of compounds with complementary functional groups are contemplated as a possible cause of supramolecular synthons in cocrystal formation. Specifically, cocrystals of rosuvastatin with l-asparagine and l-glutamine with molar ratio (1:1) were fabricated by using slow solvent evaporation and slow evaporation techniques. Novel cocrystals of rosuvastatin-asparagine (RSC-C) and rosuvastatin-glutamine (RSC-G) cocrystals obtained by slow solvent evaporation were utilized for preliminary investigation and further scale-up was done by using the solvent evaporation technique. Results The novel cocrystals showed a new characteristic of powder X-ray diffraction, thermograms of differential scanning calorimetry, 1H liquid FT-NMR spectra, and scanning electron microscopy. These results signify the establishment of intermolecular interaction within the cocrystals. In both the novel cocrystals, rosuvastatin was determined to be engaged in the hydrogen bond interaction with the complementary functional groups of l-asparagine and l-glutamine. Compared with the pure rosuvastatin, RSC-C and RSC-G cocrystal showed 2.17-fold and 1.60-fold improved solubility respectively. The dissolution test showed that the RSC-C and RSC-G cocrystal exhibited 1.97-fold and 1.94-fold higher dissolution rate than the pure rosuvastatin in pH6.8 phosphate buffer respectively. Conclusion Modulation in the chemical environment, improvement in the solubility, and dissolution rate demonstrated the benefit of co-crystallization to improve the physicochemical properties of the drug. Graphical abstract


2016 ◽  
Vol 87 (13) ◽  
pp. 1620-1630 ◽  
Author(s):  
Yangyi Chen ◽  
Jie An ◽  
Qi Zhong ◽  
Peter Müller-Buschbaum ◽  
Jiping Wang

The smart control of cotton fabric comfort by cross-linking thermo-responsive random copolymer is investigated. The monomers 2-(2-methoxyethoxy) ethoxyethyl methacrylate (MEO2MA) and ethylene glycol methacrylate (EGMA) with a molar ratio of 17:3 are selected to synthesize the thermo-responsive random copolymer poly(2-(2-methoxyethoxy) ethoxyethyl methacrylate- co-ethylene glycol methacrylate), abbreviated as P(MEO2MA- co-EGMA). By using citric acid as a cross-linking agent, the obtained P(MEO2MA- co-EGMA) is successfully immobilized onto cotton fabrics. Smart control is achieved from the thermo-responsive behavior of the copolymer. Cross-linked P(MEO2MA- co-EGMA) will collapse when the ambient temperature exceeds its transition temperature. Therefore, the formerly compact P(MEO2MA- co-EGMA) layer will switch to a porous structure, and the air/moisture permeability of the textiles is enhanced. As the comfort of the textiles is closely related to the air/moisture permeability, a smart control of the cotton fabric comfort can be realized. In addition, the softness of cotton fabrics with and without thermo-responsive polymers does not show a prominent change, even when the applied solution concentration is as high as 16% (wt%). On the contrary, the stiffness of the cotton fabric coated with poly( N-isopropylacrylamide) (PNIPAM) is significantly higher than the original cotton fabric, indicating that homo PNIPAM is less suitable for textiles used in daily lives. Moreover, the whiteness and mechanical properties are studied and stay unchanged after cross-linking. As a consequence, the introduction of P(MEO2MA- co-EGMA) into textiles can provide textiles with smart control of cotton comfort, and it will not influence the wearabilities of the textiles.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6193
Author(s):  
Kyosun Ku ◽  
Kyohei Hisano ◽  
Kyoko Yuasa ◽  
Tomoki Shigeyama ◽  
Norihisa Akamatsu ◽  
...  

Chiral nematic (N*) liquid crystal elastomers (LCEs) are suitable for fabricating stimuli-responsive materials. As crosslinkers considerably affect the N*LCE network, we investigated the effects of crosslinking units on the physical properties of N*LCEs. The N*LCEs were synthesized with different types of crosslinkers, and the relationship between the N*LC polymeric system and the crosslinking unit was investigated. The N*LCEs emit color by selective reflection, in which the color changes in response to mechanical deformation. The LC-type crosslinker decreases the helical twisting power of the N*LCE by increasing the total molar ratio of the mesogenic compound. The N*LCE exhibits mechano-responsive color changes by coupling the N*LC orientation and the polymer network, where the N*LCEs exhibit different degrees of pitch variation depending on the crosslinker. Moreover, the LC-type crosslinker increases the Young’s modulus of N*LCEs, and the long methylene chains increase the breaking strain. An analysis of experimental results verified the effect of the crosslinkers, providing a design rationale for N*LCE materials in mechano-optical sensor applications.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1094
Author(s):  
Erwan Paineau ◽  
Pascale Launois

Synthetic imogolite-like nanotubes (INT) with well-defined diameters represent a considerable opportunity for the development of advanced functional materials. Recent progress has made it possible to increase their aspect ratio and unique self-organization properties were evidenced. We suggest that slight modification of the synthesis conditions may drastically affect the resulting liquid-crystalline properties. In this work, we investigate how the precursor’s [Al]/[Ge] molar ratio (R’) impacts the morphology and the colloidal properties of aluminogermanate INTs by combining a multi-scale characterization. While only double-walled nanotubes are found for R’ ≥ 1.8, the presence of single-walled nanotubes occurs when the ratio is lowered. Except for the lowest R’ ratio investigated (R’ = 0.66), all synthetic products present one-dimensional shapes with a high aspect ratio. Small-angle X-ray scattering experiments allow us to comprehensively investigate the colloidal properties of the final products. Our results reveal that a liquid-crystalline hexagonal columnar phase is detected down to R’ = 1.33 and that it turns into a nematic arrested phase for R’ = 0.90. These results could be useful for the development of novel stimuli-responsive nanocomposites based-on synthetic imogolite nanotubes.


1990 ◽  
Vol 110 (6) ◽  
pp. 2013-2024 ◽  
Author(s):  
R K Meyer ◽  
U Aebi

Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.


2014 ◽  
Vol 2 (42) ◽  
pp. 7429-7439 ◽  
Author(s):  
Anuj Kumar ◽  
Sabindra K. Samal ◽  
Rupesh Dash ◽  
Umaprasana Ojha

The synthesis and characterization of a series of injectable and stimuli responsive hydrogels based on polyacryloyl hydrazide have been accomplished using dimethyl 2,2′-thiodiacetate, acrylic acid, diethyl malonate and polyethylene glycol diacrylate as cross-linkers through a chemical or dual cross-linking pathway.


Sign in / Sign up

Export Citation Format

Share Document