scholarly journals Structural and Chemical Properties of Geopolymer Gels Incorporated with Neodymium and Samarium

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 195
Author(s):  
Snežana S. S. Nenadović ◽  
Ljiljana M. Kljajević ◽  
Marija M. Ivanović ◽  
Miljana M. Mirković ◽  
Nadežda Radmilović ◽  
...  

The present work was focused on doping of 1% and 5% both of Nd2O3 and Sm2O3 in geopolymer gels. One of the main goals was to determine the influence of the behavior of Nd and Sm as dopants and structural nanoparticles changes of the final geopolymer formed. It is shown that the disorder formed by alkali activation of metakaolin can accommodate the rare earth cations Nd3+ and Sm3+ into their aluminosilicate framework structure. The main geopolymerization product identified in gels is Al-rich (Na)-AS-H gel comprising Al and Si in tetrahedral coordination. Na+ ions were balancing the negative charge resulting from Al3+ in tetrahedral coordination. The changes in the structures of the final product (geopolymer/Nd2O3; Sm2O3), has been characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis with energy dispersive spectrometry (EDS). Nucleation at the seed surfaces leads to the formation of phase-separated gels from rare earth phase early in the reaction process. It is confirmed that Nd and Sm have been shown to form unstable hydroxides Nd(OH)3 and Sm(OH)3 that are in equilibrium with the corresponding oxides.

2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Loredana Schiavo ◽  
Lucrezia Aversa ◽  
Roberta Tatti ◽  
Roberto Verucchi ◽  
Gianfranco Carotenuto

Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2−ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 580
Author(s):  
Kai Zhang ◽  
Yuze Bai ◽  
Zhijun Gong ◽  
Zengwu Zhao ◽  
Baowei Li ◽  
...  

Acid leaching and alkali roasting were used to remove impurities such as Ca and Si in Baiyun Obo rare earth concentrate. The effects of acid–base treatment on the physical and chemical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller characterization, X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, NH3-temperature-programmed desorption (TPD), and NO-TPD. Results showed that the content of Ce7O12 in the rare earth concentrates increased and the dispersion was uniform. The grains became smaller, the specific surface area of rare earth concentrates increased, and the active sites were more exposed. Ce coexisted in the form of Ce3+ and Ce4+, whereas Fe coexisted in the form of Fe3+ and Fe2+. The content of Fe3+ was increased. The acid–base-treated rare earth concentrates had a denitration efficiency of 87.4% at a reaction temperature of 400 °C.


1995 ◽  
Vol 10 (8) ◽  
pp. 1942-1952 ◽  
Author(s):  
A. Guivarc'h ◽  
A. Le Corre ◽  
P. Auvray ◽  
B. Guenais ◽  
J. Caulet ◽  
...  

This paper deals with the growth by molecular beam epitaxy of semimetallic (rare-earth group V element) compounds on III-V semiconductors. Results are presented, first on the Er-Ga-As and Er-Ga-Sb ternary phase diagrams, second on the lattice-mismatched ErAs/GaAs (δa ≈ +1.6%), YbAs/GaAs (δa/a = +0.8%), and ErSb/GaSb (δa/a ≈ +0.2%) heterostructures, and third on the lattice-matched Sc0.3Er0.7As/GaAs and Sc0.2Yb0.8As/GaAs systems (δa/a < 0.05%). Finally the growth of YbSb2 on GaSb(001) is reported. The studies made in situ by reflection high-energy electron diffraction (RHEED) and x-ray photoelectron diffraction and ex situ by x-ray diffraction, transmission electron microscopy, He+ Rutherford backscattering, and photoelectron spectroscopy are presented. We discuss the atomic registry of the epitaxial layers with respect to the substrates, the appearance of a mosaic effect in lattice-mismatched structures, and the optical and electrical properties of the semimetallic films. The problems encountered for III-V overgrowth on these compounds (lack of wetting and symmetry-related defects) are commented on, and we underline the interest of compounds as YbSb2 which avoid the appearance of inversion defects in the GaSb overlayers.


2009 ◽  
Vol 24 (9) ◽  
pp. 2845-2854 ◽  
Author(s):  
Balaji P. Mandal ◽  
Vinita Grover ◽  
Mrinal R. Pai ◽  
Avesh K. Tyagi

Effect of H2O2 on synthesis and powder properties such as surface area and agglomerate size of nanocrystalline Ce0.8M0.2O1.90 (M: Sm, Gd) was explored by treating cerium nitrate and rare-earth nitrate with NaOH in the presence/absence of H2O2. The resultant products were characterized by x-ray diffraction, Raman spectroscopy, thermo-gravimetry–differential thermal analysis, dynamic light scattering, surface area analysis, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The presence of H2O2 was found to have a profound effect on powder properties such as surface area and particle size of these doped ceria samples and results in smaller crystallite size, softer agglomerates, and larger surface area. A mechanism is proposed to explain the observed better powder properties of the samples. It was also shown that the samples prepared in the presence of H2O2 can lower the conversion temperature of CO to CO2, proving these to be better catalysts. Interestingly, temperature-programmed reduction studies on Sm3+-doped samples showed that the doping in conjunction with the use of H2O2 leads to enhanced reduction properties of the samples over multiple cycles.


2011 ◽  
Vol 55-57 ◽  
pp. 1648-1652
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A one step sol-gel method was used for preparation of Cu doped titania nanoparticles (NPs). The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). We discussed the calcination temperature effection on the photoreduction activity of Cu/TiO2. When the calcination temperature was 500°C, the synthesized Cu/TiO2 performed the highest photocatalytic activity.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


Sign in / Sign up

Export Citation Format

Share Document