scholarly journals Sol–Gel Co-Precipitation Synthesis, Anticoagulant and Anti-Platelet Activities of Copper-Doped Nickel Manganite Nanoparticles

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 269
Author(s):  
Shashidharagowda H. ◽  
Shridhar Mathad ◽  
Shridhar Malladi ◽  
Vinod Gubbiveeranna ◽  
Kusuma C. G. ◽  
...  

Copper-substituted nickel manganites Ni(1−x)CuxMn2O4 (Ni-TCE-NPs) were produced by co-precipitation route (sol–gel) at room temperature. Ni(1−x)CuxMn2O4-Bio (NCB) NPs were studied by powder X-ray diffraction technique, scanning electron microscopy and Raman spectroscopy. XRD spectra authenticated the copper-doped nickel manganites’ formation with particle size 23–28 nm. A significant decrease in the lattice parameter confirmed the doping of copper ions into the nickel manganites. Microscopy (SEM) was used to estimate the grain size, shape and uniformity, revealing the non-uniform agglomerated polygon and plate-like microstructure. The NCB-NPs showed anticoagulant activity by enhancing the coagulation time of citrated plasma of human beings. NCB-NPs with x = 0.35 and 0.45 have increased clotting time from control 133 ± 4 s to 401 ± 7 s and 3554 ± 80 s, respectively, and others around 134 s. Additionally NCB-NPs with x = 0.35, 0.45 inhibited the platelet aggregation by 80% and 92%, while remaining inhibited with only 30%. NCB-NPs did not show hemolytic activity in RBC cells intimate its non-toxic nature. Finally, NCB-NPs were non-toxic and known to exhibit anti-blood-clotting and antiplatelet activities, which can be used in the field of biomedical applications, especially as antithrombotic agents.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2095 ◽  
Author(s):  
Jinpei Lin ◽  
Jiaqi Zhang ◽  
Hao Sun ◽  
Qing Lin ◽  
Zeping Guo ◽  
...  

Cobalt-chromium ferrite, CoCrxFe2−xO4 (x = 0–1.2), has been synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD) indicates that samples calcined at 800 °C for 3 h were a single-cubic phase. The lattice parameter decreased with increasing Cr concentration. Scanning electron microscopy (SEM) confirmed that the sample powders were nanoparticles. It was confirmed from the room temperature Mössbauer spectra that transition from the ferrimagnetic state to the superparamagnetic state occurred with the doping of chromium. Both the saturation magnetization and the coercivity decreased with the chromium doping. With a higher annealing temperature, the saturation magnetization increased and the coercivity increased initially and then decreased for CoCr0.2Fe1.8O4.


2021 ◽  
Vol 11 (22) ◽  
pp. 11075
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Luminița Narcisa Crăciun ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.


1988 ◽  
Vol 121 ◽  
Author(s):  
Robert W. Schwartz ◽  
D. A. Payne

ABSTRACTThe crystallization behavior of chemically prepared and rapidly solidified PbTiO3 was investigated. Chemical methods were (i) polymeric sol-gel processing and (ii) co-precipitation of fine particles. Rapid solidification was obtained by a twin-roller quencher. Details are reported for the processing methods and the characteristics of the materials. X-ray diffraction and electron microscopy confirmed the amorphous nature of the prepared materials. Crystallization was examined as a function of heat-treatment conditions. Non-isothermal DSC was used to determine the kinetics of crystallization. Activation energies and frequency factors were determined. Co-precipitated PbTiO3 crystallized at the lowest temperature of 375 C, followed by sol-gel at 425 C, and rapidly solidified at 475 C. The results are interpreted in terms of processing routes, structural free-energies, available surface areas and fractional free volumes.


2017 ◽  
Vol 907 ◽  
pp. 56-60
Author(s):  
Ummuhanı Hilal Özer ◽  
Kerim Emre Öksüz ◽  
Ali Özer

It is well known that sol-gel technique is a simple method to produce nano sized ceramic powders. In this study, cerium oxide doped zirconia samples, with 10 mol%-12mol% and14mol% CeO2, were synthesized by sol-gel technique and characterized. The surface morphology, elemental composition, microstructure, and phase analysis, of the sintered CeO2 doped ZrO2 ceramics were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDS) analysis, and X-ray diffraction (XRD) respectively. X-ray diffraction for samples sintered at 1550 °C for 4h revealed that the zirconia ceramics have a tetragonal phase structure. The addition of CeO2 can raise the content of the tetragonal phase, but the minor monoclinic phase exists even at the CeO2 content of 10 mol%. The effect of dopant concentration on the lattice parameter, average primary crystallite size and micro-strain was studied. Relative densities for CeO2 doped ZrO2 bulk ceramics varied between 95% and 99 %, depending on the CeO2 addition.


The pure and Mg2+ doped CeO2 quantum dot were synthesized by sol-gel technique. The prepared quantum dots were characterized using X-ray diffraction pattern (XRD), Scanning electron microscope (SEM-EDX). The XRD results show cubic structure of the CeO2 quantum dots. The crystalline size (D), microstrain (ε), dislocation density (δ) and lattice parameter (α) were calculated and analyzed. SEM-EDX analysis shows the morphology and the presence of elements. The photocatalytic activity of the synthesized quantum dot was evaluated based on the photodegradation of methylene blue (MB) by UV-Vis spectrometry.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6008
Author(s):  
Tahira Yaqoob ◽  
Malika Rani ◽  
Arshad Mahmood ◽  
Rubia Shafique ◽  
Safia Khan ◽  
...  

MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial low-cost co-precipitation technique in order to inspect its capacitive storage potential for supercapacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to 6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was estimated. Electrode properties were characterized by applying electrochemical observations such as cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of 1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4 nanocomposite electrode fabrication in energy storage devices such as supercapacitors.


2018 ◽  
Vol 71 (11) ◽  
pp. 914
Author(s):  
Yanfang Xia ◽  
Min Liu ◽  
Duxin Li

Co0.76Cu0.74[Fe(CN)6]·7.5H2O was prepared as a powder by a chemical co-precipitation method. The powder X-ray diffraction patterns were indexed to the typical face-centred cubic structure with the lattice parameter a 10.55(2) Å. The temperature dependence of the χ−1 curve obeys the Curie–Weiss law (χ = C/(T – θ)) in the temperature range of 180–300 K. According to Curie–Weiss law, the calculated θ value is −54.82 K. In the paramagnetic state at 300 K, the effective magnetic moment (μeff = (8χT)1/2) is 3.58 μB per formula unit. The calculated theoretical effective magnetic moment is 4.06 μB. The magnetic field cooling measurements under a 200 Oe applied magnetic field show that the saturation magnetization value at 2 K of the complex Co0.76Cu0.74[Fe(CN)6]·7.5H2O is 1.528 emu g−1.


Cerâmica ◽  
2014 ◽  
Vol 60 (355) ◽  
pp. 425-428 ◽  
Author(s):  
M. R. Bodke ◽  
Y. Purushotham ◽  
B. N. Dole

Chromium doped ZnS nanocrystals with pure and 10% compositions were synthesized by chemical co-precipitation route. Samples were characterized by X-ray diffraction (XRD) technique, Fourier transforms infrared spectroscopy (FTIR) and UV-Visible spectrometer. Lattice parameter 'a' decreases and grain size increases with increasing Cr concentration. XRD study shows that both the samples have cubic structure. Grain size increases due to ionic radius. The functional groups and chemical species of Cr doped ZnO samples were determined using FTIR data. UV-Vis study revealed that red shift is clearly observed in absorption band. Surface morphology of pure and 10% Cr doped samples was investigated by SEM technique and it is confirmed that images exibit cubic form of the samples. Using EDS, percentage of chemical compositions of material recorded.


Author(s):  
Guo-Bin Jung ◽  
Ting-Chu Jao ◽  
Chia-Chen Yeh ◽  
Ming-Hsien Huang ◽  
Wang-Shen Su

A series of Y0.2ZrxCe0.8−xO1.9 compounds (0 ≤ x ≤ 0.6) had been prepared by the modified sol-gel method and characterized by powder X-ray diffraction, thermo-gravimetric analysis, four-probe resistivity, and Vickers’s hardness studies. The gels from co-precipitation were treated with heated 1-octanol. All of the samples showed fluoride structure after calcined at 600 °C. Sintering the powders of Y0.2Ce0.8O1.9 and Y0.2Zr0.6Ce0.2O1.9 at 1300 °C gave the relative density of 95.8% and 99%, respectively. 99% relative density could be obtained for all samples after sintering at 1500 °C. This study showed a much more improved result than that of the previous reports. The hardness was 13.7 GPa for the Y0.2Zr0.6Ce0.2O1.9 pellet, which was twice greater than that for Y0.2Ce0.8O1.9 (7.1 GPa). Therefore, the mechanical properties could be improved by the addition of ZrO2 to Y0.2ZrxCe0.8−xO1.9. At 800 °C, the electrical conductivity of Y0.2Ce0.8O1.9 and Y0.2Zr0.6Ce0.2O1.9 were 3.3 × 10−2 S/cm and 5.5 × 10−3 S/cm, respectively. The conductivity was decreased by the addition of ZrO2 to Y0.2Ce0.8O1.9. It showed that the conductivity and hardness of Y0.2Zr0.2Ce0.6O1.9 were 1.2 × 10−2 S/cm and 9.6 GPa, respectively, at 800 °C and could be a better electrolyte candidate for “intermediate-temperature” unitized regenerative solid oxide fuel cells.


2002 ◽  
Vol 35 (5) ◽  
pp. 577-580 ◽  
Author(s):  
Zein Heiba ◽  
Hasan Okuyucu ◽  
Y. S. Hascicek

Nanosized polycrystalline samples of (Er1−uGdu)2O3(0 ≤u≤ 1.0) were synthesized by a sol–gel technique. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofu. The Er3+and Gd3+ions were randomly distributed over two cationic sites, 8band 24d, in the space groupIa\bar{3} (206) in all refined structures. The lattice parameter was found to vary non-linearly with the composition (u). The average microstrain and average crystallite size have been calculated from the Williamson–Hall plots for each sample. The average size ranges from 50 to 70 nm, and the microstrain from 0.4 to 1.7%.


Sign in / Sign up

Export Citation Format

Share Document