scholarly journals Identification of a Missense Variant in MFSD12 Involved in Dilution of Phaeomelanin Leading to White or Cream Coat Color in Dogs

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 386 ◽  
Author(s):  
Benoit Hédan ◽  
Edouard Cadieu ◽  
Nadine Botherel ◽  
Caroline Dufaure de Citres ◽  
Anna Letko ◽  
...  

White coat color in mammals has been selected several times during the domestication process. Numerous dog breeds are fixed for one form of white coat color that involves darkly pigmented skin. The genetic basis of this color, due to the absence of pigment in the hairs, was suggested to correspond to extreme dilution of the phaeomelanin, by both the expression of only phaeomelanin (locus E) and its extreme dilution (locus I). To go further, we performed genome-wide association studies (GWAS) using a multiple breed approach. The first GWAS, using 34 white dogs and 128 non-white dogs, including White Shepherds, Poodles, Cotons de Tulear and Bichons allowed us to identify two significantly associated loci on the locus E and a novel locus on chromosome 20. A second GWAS using 15 other breeds presenting extreme phaeomelanin dilution confirmed the position of locus I on the chromosome 20 (position 55 Mb pcorrected = 6 × 10−13). Using whole-genome sequencing, we identified a missense variant in the first exon of MFSD12, a gene recently identified to be involved in human, mouse and horse pigmentation. We confirmed the role of this variant in phaeomelanin dilution of numerous canine breeds, and the conserved role of MFSD12 in mammalian pigmentation.

2016 ◽  
Vol 14 (2) ◽  
pp. 197-207
Author(s):  
Nguyễn Thị Kim Liên ◽  
Nguyễn Huy Hoàng

Psoriasis is a chronic dermatitis disease. Although the disease is not dangerous but it affects patients’s life in many aspects and involving a large number of people in the world. Besides that, psoriasis related to many other diseases such as metabolic disorder, diabetes, cardiovascular disease or can develop into servere arthritis and psoriasis arthritis leading to joint deformities. HLAC gene located on chromosome 6 (locus PSORS1) is known to have an important role in the susceptibility of disease. Besides, investigations showed that psoriasis is controlled by many loci and genes. By using traditional methods and genome wide association studies (GWAS) have been identified 13 loci and many genes involved of disease. However, the role of each locus and gene influence to the susceptibility of disease, presentation of disease, time onset and the links with other diseases have not yet been defined clearly. Among the relevant loci, the PSORS1 locus still considered the main influence on the susceptibility of disease. Noteworthy, the factors of age, gender and race have influences to the disease manifestation of different loci. The studies also provides evidences of the relation of proriasis and increasing risk cardiovascular, hypertension, diabetes and other diseases. So that, by understanding the genetic basis of the disease, the doctors and patients can get orientation in prevention, treatment and minimizing the impact of the disease. In this article, we give a clearer view of the genetic basis of psoriasis.


2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Germán D. Carrasquilla ◽  
Malene Revsbech Christiansen ◽  
Tuomas O. Kilpeläinen

Abstract Purpose of Review Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. Recent Findings More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. Summary The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.


Author(s):  
Navnit S. Makaram ◽  
Stuart H. Ralston

Abstract Purpose of Review To provide an overview of the role of genes and loci that predispose to Paget’s disease of bone and related disorders. Recent Findings Studies over the past ten years have seen major advances in knowledge on the role of genetic factors in Paget’s disease of bone (PDB). Genome wide association studies have identified six loci that predispose to the disease whereas family based studies have identified a further eight genes that cause PDB. This brings the total number of genes and loci implicated in PDB to fourteen. Emerging evidence has shown that a number of these genes also predispose to multisystem proteinopathy syndromes where PDB is accompanied by neurodegeneration and myopathy due to the accumulation of abnormal protein aggregates, emphasising the importance of defects in autophagy in the pathogenesis of PDB. Summary Genetic factors play a key role in the pathogenesis of PDB and the studies in this area have identified several genes previously not suspected to play a role in bone metabolism. Genetic testing coupled to targeted therapeutic intervention is being explored as a way of halting disease progression and improving outcome before irreversible skeletal damage has occurred.


Stroke ◽  
2021 ◽  
Author(s):  
Martin Dichgans ◽  
Nathalie Beaufort ◽  
Stephanie Debette ◽  
Christopher D. Anderson

The field of medical and population genetics in stroke is moving at a rapid pace and has led to unanticipated opportunities for discovery and clinical applications. Genome-wide association studies have highlighted the role of specific pathways relevant to etiologically defined subtypes of stroke and to stroke as a whole. They have further offered starting points for the exploration of novel pathways and pharmacological strategies in experimental systems. Mendelian randomization studies continue to provide insights in the causal relationships between exposures and outcomes and have become a useful tool for predicting the efficacy and side effects of drugs. Additional applications that have emerged from recent discoveries include risk prediction based on polygenic risk scores and pharmacogenomics. Among the topics currently moving into focus is the genetics of stroke outcome. While still at its infancy, this field is expected to boost the development of neuroprotective agents. We provide a brief overview on recent progress in these areas.


Author(s):  
Nasa Sinnott-Armstrong ◽  
Sahin Naqvi ◽  
Manuel Rivas ◽  
Jonathan K Pritchard

SummaryGenome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. However, for most traits it remains difficult to interpret what genes and biological processes are impacted by the top hits. Here, as a contrast, we describe UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are biologically simpler than most diseases, and for which we know a great deal in advance about the core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that most top hits are readily interpretable. We observe huge enrichment of significant signals near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of variation in each trait, including insights into differences in testosterone regulation between females and males. Meanwhile, in other respects the results are reminiscent of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic, with most of the variance coming not from core genes, but from thousands to tens of thousands of variants spread across most of the genome. Given that diseases are often impacted by many distinct biological processes, including these three, our results help to illustrate why so many variants can affect risk for any given disease.


Author(s):  
Yoshihiko Yu ◽  
Erica K. Creighton ◽  
Reuben M. Buckley ◽  
Leslie A. Lyons ◽  

AbstractAn inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test, a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing, and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. Obligate carrier cats were heterozygous. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasizes the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.


2020 ◽  
Vol 26 (5) ◽  
pp. 490-500
Author(s):  
A. O. Konradi

The article reviews monogenic forms of hypertension, data on the role of heredity of essential hypertension and candidate genes, as well as genome-wide association studies. Modern approach for the role of genetics is driven by implementation of new technologies and their productivity. High performance speed of new technologies like genome-wide association studies provide data for better knowledge of genetic markers of hypertension. The major goal nowadays for research is to reveal molecular pathways of blood pressure regulation, which can help to move from populational to individual level of understanding of pathogenesis and treatment targets.


Sign in / Sign up

Export Citation Format

Share Document