scholarly journals Transcriptional Networks of Microglia in Alzheimer’s Disease and Insights into Pathogenesis

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 798 ◽  
Author(s):  
Chew ◽  
Petretto

Microglia, the main immune cells of the central nervous system, are increasingly implicated in Alzheimer’s disease (AD). Manifold transcriptomic studies in the brain have not only highlighted microglia’s role in AD pathogenesis, but also mapped crucial pathological processes and identified new therapeutic targets. An important component of many of these transcriptomic studies is the investigation of gene expression networks in AD brain, which has provided important new insights into how coordinated gene regulatory programs in microglia (and other cell types) underlie AD pathogenesis. Given the rapid technological advancements in transcriptional profiling, spanning from microarrays to single-cell RNA sequencing (scRNA-seq), tools used for mapping gene expression networks have evolved to keep pace with the unique features of each transcriptomic platform. In this article, we review the trajectory of transcriptomic network analyses in AD from brain to microglia, highlighting the corresponding methodological developments. Lastly, we discuss examples of how transcriptional network analysis provides new insights into AD mechanisms and pathogenesis.

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Divaker Choubey

AbstractCumulative evidence indicates that activation of innate immune responses in the central nervous system (CNS) induces the expression of type 1 interferons (T1 IFNs), a family of cytokines. The T1 IFNs (IFN-α/β), through activation of the JAK/STAT-signaling in microglia, astrocytes, and neurons, induce the expression of IFN-inducible proteins, which mediate the pro- and anti-inflammatory functions of IFNs. Accordingly, T1 IFN-inducible Absent in Melanoma 2 proteins (murine Aim2 and human AIM2) negatively regulate the expression of TI IFNs and, upon sensing higher levels of cytosolic DNA, assemble the Aim2/AIM2 inflammasome, resulting in activation of caspase-1, pyroptosis, and the secretion of pro-inflammatory cytokines (e.g., IL-1β and IL-18). Of interest, studies have indicated a role for the Aim2/AIM2 proteins in neuroinflammation and neurodegenerative diseases, including Alzheimer’s disease (AD). The ability of Aim2/AIM2 proteins to exert pro- and anti-inflammatory effects in CNS may depend upon age, sex hormones, cell-types, and the expression of species-specific negative regulators of the Aim2/AIM2 inflammasome. Therefore, we discuss the role of Aim2/AIM2 proteins in the development of AD. An improved understanding of the role of Absent in Melanoma 2 proteins in AD could identify new approaches to treat patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Diego Marques-Coelho ◽  
◽  
Lukas da Cruz Carvalho Iohan ◽  
Ana Raquel Melo de Farias ◽  
Amandine Flaig ◽  
...  

AbstractAlzheimer’s disease (AD) is the leading cause of dementia in aging individuals. Yet, the pathophysiological processes involved in AD onset and progression are still poorly understood. Among numerous strategies, a comprehensive overview of gene expression alterations in the diseased brain could contribute for a better understanding of the AD pathology. In this work, we probed the differential expression of genes in different brain regions of healthy and AD adult subjects using data from three large transcriptomic studies: Mayo Clinic, Mount Sinai Brain Bank (MSBB), and ROSMAP. Using a combination of differential expression of gene and isoform switch analyses, we provide a detailed landscape of gene expression alterations in the temporal and frontal lobes, harboring brain areas affected at early and late stages of the AD pathology, respectively. Next, we took advantage of an indirect approach to assign the complex gene expression changes revealed in bulk RNAseq to individual cell types/subtypes of the adult brain. This strategy allowed us to identify previously overlooked gene expression changes in the brain of AD patients. Among these alterations, we show isoform switches in the AD causal gene amyloid-beta precursor protein (APP) and the risk gene bridging integrator 1 (BIN1), which could have important functional consequences in neuronal cells. Altogether, our work proposes a novel integrative strategy to analyze RNAseq data in AD and other neurodegenerative diseases based on both gene/transcript expression and regional/cell-type specificities.


2017 ◽  
Author(s):  
Kuan-lin Huang ◽  
Edoardo Marcora ◽  
Anna A Pimenova ◽  
Antonio F Di Narzo ◽  
Manav Kapoor ◽  
...  

AbstractA genome-wide survival analysis of 14,406 Alzheimer’s disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and fourteen novel loci associated with age at onset. LD score regression of 220 cell types implicated regulation of myeloid gene expression in AD risk. In particular, the minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability is enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affect the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.


Neuroforum ◽  
2018 ◽  
Vol 24 (4) ◽  
pp. A197-A205 ◽  
Author(s):  
Steffen E. Storck ◽  
Claus U. Pietrzik

Abstract The blood brain-barrier (BBB), built up by the interaction of different cell types in vessels of the brain, is essential for brain homeostasis. As a gatekeeper of the central nervous system (CNS), the BBB controls the exchange of molecules between brain and blood. In many neurodegenerative diseases including Alzheimer’s disease (AD) the BBB show alterations which impair brain function and promote neurodegeneration. As an important elimination route for neurotoxic amyloid-beta (Aβ), the BBB is crucial for the healthy brain by regulating the concentration of soluble Aβ in the interstitial fluid (ISF) in the brain. Here, we discuss the composition and distinctive physiological features of CNS vasculature and the pathological alterations that are present in AD and disturb BBB function.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2415
Author(s):  
Fokion Spanos ◽  
Shane A. Liddelow

Alzheimer’s disease (AD) is the most common form of dementia. Despite many years of intense research, there is currently still no effective treatment. Multiple cell types contribute to disease pathogenesis, with an increasing body of data pointing to the active participation of astrocytes. Astrocytes play a pivotal role in the physiology and metabolic functions of neurons and other cells in the central nervous system. Because of their interactions with other cell types, astrocyte functions must be understood in their biologic context, thus many studies have used mouse models, of which there are over 190 available for AD research. However, none appear able to fully recapitulate the many functional changes in astrocytes reported in human AD brains. Our review summarizes the observations of astrocyte biology noted in mouse models of familial and sporadic AD. The limitations of AD mouse models will be discussed and current attempts to overcome these disadvantages will be described. With increasing understanding of the non-neuronal contributions to disease, the development of new methods and models will provide further insights and address important questions regarding the roles of astrocytes and other non-neuronal cells in AD pathophysiology. The next decade will prove to be full of exciting opportunities to address this devastating disease.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


Author(s):  
М.Е. Лопаткина ◽  
В.С. Фишман ◽  
М.М. Гридина ◽  
Н.А. Скрябин ◽  
Т.В. Никитина ◽  
...  

Проведен анализ генной экспрессии в нейронах, дифференцированных из индуцированных плюрипотентных стволовых клеток пациентов с идиопатическими интеллектуальными нарушениями и реципрокными хромосомными мутациями в регионе 3p26.3, затрагивающими единственный ген CNTN6. Для нейронов с различным типом хромосомных аберраций была показана глобальная дисрегуляция генной экспрессии. В нейронах с вариациями числа копий гена CNTN6 была снижена экспрессия генов, продукты которых вовлечены в процессы развития центральной нервной системы. The gene expression analysis of iPSC-derived neurons, obtained from patients with idiopathic intellectual disability and reciprocal microdeletion and microduplication in 3p26.3 region affecting the single CNTN6 gene was performed. The global gene expression dysregulation was demonstrated for cells with CNTN6 copy number variation. Gene expression in neurons with CNTN6 copy number changes was downregulated for genes, whose products are involved in the central nervous system development.


Sign in / Sign up

Export Citation Format

Share Document