scholarly journals Histone Acetylation Changes in Plant Response to Drought Stress

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1409
Author(s):  
Shuang Li ◽  
Xu He ◽  
Yuan Gao ◽  
Chenguang Zhou ◽  
Vincent L. Chiang ◽  
...  

Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.

2004 ◽  
Vol 24 (14) ◽  
pp. 6278-6287 ◽  
Author(s):  
Yoshihisa Naruse ◽  
Kentaro Oh-hashi ◽  
Norio Iijima ◽  
Midori Naruse ◽  
Hideyo Yoshioka ◽  
...  

ABSTRACT Circadian clock genes are regulated through a transcriptional-translational feedback loop. Alterations of the chromatin structure by histone acetyltransferases and histone deacetylases (HDACs) are commonly implicated in the regulation of gene transcription. However, little is known about the transcriptional regulation of mammalian clock genes by chromatin modification. Here, we show that the state of acetylated histones fluctuated in parallel with the rhythm of mouse Per1 (mPer1) or mPer2 expression in fibroblast cells and liver. Mouse CRY1 (mCRY1) repressed transcription with HDACs and mSin3B, which was relieved by the HDAC inhibitor trichostatin A (TSA). In turn, TSA induced endogenous mPer1 expression as well as the acetylation of histones H3 and H4, which interacted with the mPer1 promoter region in fibroblast cells. Moreover, a light pulse stimulated rapid histone acetylation associated with the promoters of mPer1 or mPer2 in the suprachiasmatic nucleus (SCN) and the binding of phospho-CREB in the CRE of mPer1. We also showed that TSA administration into the lateral ventricle induced mPer1 and mPer2 expression in the SCN. Taken together, these data indicate that the rhythmic transcription and light induction of clock genes are regulated by histone acetylation and deacetylation.


2020 ◽  
Author(s):  
Hua Li ◽  
Huajie Liu ◽  
Xinxin Pei ◽  
Hongyu Chen ◽  
Xiao Li ◽  
...  

Abstract Background: Histone acetyltransferases (HATs) and histone deacetylases (HDACs) contribute to plant growth, development, and stress responses. A number of HAT and HDAC genes have been identified in several plants. However, wheat HATs and HDACs have not been comprehensively characterized. In this study, we identified TaHATs and TaHDACs in the wheat genome using bioinformatics tools. Result: In total, 30 TaHAT genes and 53 TaHDAC genes were detected in the wheat genome. As described in other plants, TaHATs were classified into four subfamilies (i.e., GNAT, p300/CBP, MYST, and TAFII250) and TaHDACs were divided into three subfamilies (i.e., RPD3/HDA1, HD2, and SIR2). Phylogenetic and conserved domain analyses showed that TaHATs and TaHDACs are highly similar to those in Arabidopsis and rice; however, divergence and expansion from Arabidopsis and rice were also observed. We detected many stress-related cis-regulatory elements in the promoter regions of these genes (i.e., ABRE, STRE, MYB et al.). Further, based on a comparative expression analyses of three varieties with different degrees of drought resistance under drought stress, we found that TaHAG2, TaHAG3, TaHAC2, TaHDA18, TaHDT1, and TaHDT2 are likely regulate drought stress in wheat. Conclusions: In this study, TaHATs and TaHDACs from the wheat genome were identified. Three TaHATs and three TaHDACs were very likely to regulate drought stress based on a promoter analysis and gene expression analysis. These results provide a foundation for further research on the regulation of acetylation in wheat and its role in the response to drought stress.


1991 ◽  
Vol 266 (28) ◽  
pp. 18745-18750 ◽  
Author(s):  
G. López-Rodas ◽  
E.I. Georgieva ◽  
R. Sendra ◽  
P. Loidl

Author(s):  
Manar Khaled Al- Hayfani ◽  
Hala Salah Abdel Kawy ◽  
Fatemah Omar Kamel

Pulmonary fibrosis is a condition defined as a recurrent and progressive interstitial fibrotic disease and is considered to be terminated by interstitial lung disease disorders. Accumulating evidence indicates that epigenetic alterations, including histone acetylation, play a pivotal role in this process. Histone acetylation is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Vorinostat is a member of a larger class of compounds that inhibit histone deacetylases. Even though the pathogenesis of lung fibrosis is complicated, hypotheses have been proposed in recent years that include inflammation, epithelial degradation, differentiated fibroblast, angiogenesis, and oxidative stress. Emerging evidence from several preclinical studies has shown that Vorinostat has beneficial effects in preventing or reversing fibrogenesis. In this review, we summarize the latest findings of the roles of HDACs in the pathogenesis of pulmonary fibrosis and highlight the potential antifibrotic mechanism of Vorinostat in this diseases.


2020 ◽  
Vol 15 (11) ◽  
pp. 1075-1090
Author(s):  
Shan Su ◽  
Xiuyun Li ◽  
Xinmei Yang ◽  
Yiman Li ◽  
Xueqi Chen ◽  
...  

Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.


2019 ◽  
Vol 20 (23) ◽  
pp. 5956 ◽  
Author(s):  
Zhilei Jiang ◽  
Fengxue Jin ◽  
Xiaohui Shan ◽  
Yidan Li

Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1204
Author(s):  
Xinqiao Zhan ◽  
Yichun Qian ◽  
Bizeng Mao

Dendrobium catenatum, a valuable Chinese herb, frequently experiences abiotic stresses, such as cold and drought, under natural conditions. Nonphosphorus glycerolipid synthase (NGLS) genes are closely linked to the homeostasis of membrane lipids under abiotic stress in plants. However, there is limited information on NGLS genes in D. catenatum. In this study, a total of eight DcaNGLS genes were identified from the D. catenatum genome; these included three monogalactosyldiacylglycerol synthase (DcaMGD1, 2, 3) genes, two digalactosyldiacylglycerol synthase (DcaDGD1, 2) genes, and three sulfoquinovosyldiacylglycerol synthase (DcaSQD1, 2.1, 2.2) genes. The gene structures and conserved motifs in the DcaNGLSs showed a high conservation during their evolution. Gene expression profiling showed that the DcaNGLSs were highly expressed in specific tissues and during rapid growth stages. Furthermore, most DcaNGLSs were strongly induced by freezing and post-freezing recovery. DcaMGD1 and DcaSQDs were greatly induced by salt stress in leaves, while DcaDGDs were primarily induced by salt stress in roots. Under drought stress, most DcaNGLSs were regulated by circadian rhythms, and DcaSQD2 was closely associated with drought recovery. Transcriptome analysis also revealed that MYB might be regulated by circadian rhythm and co-expressed with DcaNGLSs under drought stress. These results provide insight for the further functional investigation of NGLS and the regulation of nonphosphorus glycerolipid biosynthesis in Dendrobium.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 512
Author(s):  
Virve Cavallucci ◽  
Giovambattista Pani

β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 cells or in vitro HDAC inhibitor activities, and, unlike Butyrate and HMB, did not interfere with myotube formation in a myoblast differentiation assay. Instead, βHB dramatically increased lysine β-hydroxybutyrylation (Kbhb) of histone tails, an epigenetic mark associated with fasting responses and muscle catabolic states. However, when C2C12 cells were exposed to βHB in the presence of equimolar HMB this chromatin modification was drastically reduced, pointing to a role for HMB in attenuating ketosis-associated muscle wasting. In conclusion, while their mechanistic underpinnings remain to be clarified, these preliminary observations highlight novel and potentially important activities of HMB as an epigenetic regulator and βHB antagonist in muscle precursor cells, to be further explored in their biomedical implications.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Sang Gyu Lee ◽  
Hyeri Lee ◽  
Byung Cheon Lee ◽  
Hojoung Lee ◽  
Jun Cheol Moon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document