scholarly journals Developmental Signals in the 21st Century; New Tools and Advances in Plant Signaling

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1708
Author(s):  
Ignacio Ezquer ◽  
Paola Vittorioso ◽  
Stefan de Folter

This special issue includes different research papers and reviews that studied the role of signaling cascades controlling both plant developmental processes and plant response mechanisms to biotic and abiotic stresses [...]

Author(s):  
Priyanka Singh ◽  
Yamshi Arif ◽  
Andrzej Bajguz ◽  
Shamsul Hayat

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is a special subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin’s role in increasing several physiological and biochemical processes in under stress and non-stress environments. Additionally, this review briefly assesses quercetin’s role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin’s role in plant signaling are also discussed.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1255
Author(s):  
Muhammad Amjad Nawaz ◽  
Gyuhwa Chung

The anticipated population growth by 2050 will be coupled with increased food demand. To achieve higher and sustainable food supplies in order to feed the global population by 2050, a 2.4% rise in the yield of major crops is required. The key to yield improvement is a better understanding of the genetic variation and identification of molecular markers, quantitative trait loci, genes, and pathways related to higher yields and increased tolerance to biotic and abiotic stresses. Advances in genetic technologies are enabling plant breeders and geneticists to breed crop plants with improved agronomic traits. This Special Issue is an effort to report the genetic improvements by adapting genomic techniques and genomic selection.


2016 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
C. Iliopoulos ◽  
M.L. Cook ◽  
F. Chaddad

This special issue of the Journal on Chain and Network Science on ‘Agricultural cooperatives in netchains’ includes new research on three research themes: (1) explanation of why are cooperatives particularly important in certain food netchains; (2) willingness of farmers to invest in their cooperative’s netchain; and (3) the role of ambidexterity in the emergence of multi-stakeholder cooperatives. The issue is organized into six papers; one editorial and five research papers. The findings reported in this issue inform scholarly work on agricultural cooperatives through multiple theoretical lenses and empirical approaches. They also have important managerial and public policy implications.


2011 ◽  
Vol 156 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Brice Bourdenx ◽  
Amélie Bernard ◽  
Frédéric Domergue ◽  
Stéphanie Pascal ◽  
Amandine Léger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document