scholarly journals Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 94
Author(s):  
Inga Preiss-Daimler ◽  
Stergios D. Zarkogiannis ◽  
George Kontakiotis ◽  
Rüdiger Henrich ◽  
Assimina Antonarakou

This study intends to review and assess the middle to late Miocene Carbonate Crash (CC) events in the low to mid latitudes of the Pacific, Indian, Caribbean and Atlantic Oceans as part of the global paleoceanographic reorganisations between 12 and 9 Ma with an emphasis on record preservation and their relation to mass accumulation rates (MAR). In the Eastern Pacific the accumulation changes in carbonate and opal probably reflect an El-Niño-like state of low productivity, which marks the beginning of the CC-event (11.5 Ma), followed by decreased preservation and influx of corrosive bottom waters (10.3 to 10.1 Ma). At the same time in the Atlantic, carbonate preservation considerably increases, suggesting basin-to-basin fractionation. The low-latitude Indian Ocean, the Pacific and the Caribbean are all characterised by a similar timing of preservation increase starting at ~9.6–9.4 Ma, while their MARs show drastic changes with different timing of events. The Atlantic preservation pattern shows an increase as early as 11.5 Ma and becomes even better after 10.1 Ma. The shallow Indian Ocean (Mascarene plateau) is characterised by low carbonate accumulation throughout and increasing preservation after 9.4 Ma. At the same time, the preservation in the Atlantic, including the Caribbean, is increasing due to enhanced North Atlantic deep-water formation, leading to the increase in carbonate accumulation at 10 Ma. Moreover, the shoaling of the Central American Isthmus might have helped to enhance Caribbean preservation after 9.4 Ma. Lower nannoplankton productivity in the Atlantic should have additionally contributed to low mass accumulation rates during the late CC-interval. Overall, it can be inferred that these carbonate minima events during the Miocene may be the result of decreased surface ocean productivity and oceanographically driven increased seafloor dissolution.

2011 ◽  
Vol 8 (2) ◽  
pp. 415-431 ◽  
Author(s):  
D. Gallego-Torres ◽  
F. Martinez-Ruiz ◽  
P. A. Meyers ◽  
A. Paytan ◽  
F. J. Jimenez-Espejo ◽  
...  

Abstract. We have studied a suite of 35 sapropel sequences from a transect of four ODP sites across the Eastern Mediterranean to explore for paleoproductivity patterns and provide new insights on ecological changes during their deposition. Paleoproductivity variations were identified using TOC and Babio mass accumulation rates and δ15Ntotal and δ13Corg values. Elevated Ba/Al and TOC mass accumulation rates record periods of basin-wide amplified productivity. Our data further support that sapropels were formed by cyclic increases in primary production of marine organic matter largely sustained by N-fixing bacteria. This productivity increase was triggered by climate factors leading to increased fluvial discharge and amplified nutrient input that also favored the establishment of N-fixing bacteria. Enhanced productivity led to depletion of deepwater dissolved oxygen and consequently improved organic matter preservation. Primary production was more intense during the middle to Late Pleistocene compared to Pliocene equivalents, coinciding with increasing total sedimentation rates. δ15N values are dramatically lower in the sapropels than in TOC-poor background sediments, indicating a major contribution from nitrogen-fixing bacteria to the higher productivity during sapropel deposition. Additionally, different degrees of denitrification occurred as a consequence of water column oxygenation which in turns evolved from stagnant anoxic bottom waters during Pliocene sapropels to oxygen depleted and sluggish circulation in late Quaternary layers. These differences between sapropel layers provide new evidences for the general evolution of the Eastern Mediterranean basin during the last 3 Mys in terms of paleoceanographic conditions and the intensity of climate variability leading to sapropel deposition.


2021 ◽  
Author(s):  
María H. Toyos ◽  
Gisela Winckler ◽  
Helge W. Arz ◽  
Lester Lembke-Jene ◽  
Carina B. Lange ◽  
...  

Abstract. Changes in Southern Ocean export production have broad biogeochemical and climatic implications. Specifically, iron fertilization likely increased subantarctic nutrient utilization and enhanced the efficiency of the biological pump during glacials. However, past export production in the subantarctic Southeast Pacific is poorly documented, and its connection to Fe fertilization, potentially related to Patagonian Ice Sheet dynamics is unknown. We report on biological productivity changes over the past 400 ka, based on a combination of 230Thxs-normalized and stratigraphy-based mass accumulation rates of biogenic barium, organic carbon, biogenic opal, and calcium carbonate as indicators of paleo-export production in a sediment core upstream of the Drake Passage. In addition, we use fluxes of iron and lithogenic material as proxies for terrigenous matter, and thus potential micronutrient supply. Stratigraphy-based mass accumulation rates are strongly influenced by bottom-current dynamics, which result in variable sediment focussing or winnowing at our site. Carbonate is virtually absent in the core, except during peak interglacial intervals of the Holocene, and Marine Isotope Stages (MIS) 5 and 11, likely caused by transient decreases in carbonate dissolution. All other proxies suggest that export production increased during most glacial periods, coinciding with high iron fluxes. Such augmented glacial iron fluxes at the core site were most likely derived from glaciogenic input from the Patagonian Ice Sheet promoting the growth of phytoplankton. Additionally, glacial export production peaks are also consistent with northward shifts of the Subantarctic and Polar Fronts, which positioned our site south of the Subantarctic Front and closer to silicic acid-rich waters of the Polar Frontal Zone, as well as a with a decrease in the diatom utilization of Si relative to nitrate under Fe-replete conditions. However, glacial export production near the Drake Passage was lower than in the Atlantic and Indian sectors of the Southern Ocean, which may relate to complete consumption of silicic acid in the study area. Our results underline the importance of micro-nutrient fertilization through lateral terrigenous input from South America rather than aeolian transport, and exemplify the role of frontal shifts and nutrient limitation for past productivity changes in the Pacific entrance to the Drake Passage.


2021 ◽  
Author(s):  
Hugo G. Hidalgo ◽  
Eric J. Alfaro ◽  
Franklin Hernández-Castro ◽  
Paula M. Pérez-Briceño

<p>Tropical cyclones are one of the most important causes of disasters in Central America. Using historical (1970–2010) tracks of cyclones in the Caribbean and Pacific basin, we identify critical path locations where these low-pressure systems cause the highest number of floods in a set of 88 precipitation stations in the region. Results show that tropical cyclones from the Caribbean and Pacific basin produce a large number of indirect impacts on the Pacific slope of the Central American isthmus. Although the direct impact of a tropical cyclone usually results in devastation in the affected region, the indirect effects are more common and sometimes equally severe. In fact, the storm does not need to be an intense hurricane to cause considerable impacts and damage. The location of even a lower intensity storm in critical positions of the oceanic basin can result in destructive indirect impacts in Central America. The identification of critical positions can be used for emergency agencies in the region to issue alerts of possible flooding and catastrophic events.</p>


2019 ◽  
Vol 502 ◽  
pp. 30-44 ◽  
Author(s):  
Zoran Perić ◽  
Emma Lagerbäck Adolphi ◽  
Thomas Stevens ◽  
Gábor Újvári ◽  
Christian Zeeden ◽  
...  

Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Vadim Levin ◽  
Stephen Elkington ◽  
James Bourke ◽  
Ivonne Arroyo ◽  
Lepolt Linkimer

Abstract Surrounded by subducting slabs and continental keels, the upper mantle of the Pacific is largely prevented from mixing with surrounding areas. One possible outlet is beneath the southern part of the Central American isthmus, where regional observations of seismic anisotropy, temporal changes in isotopic composition of volcanic eruptions, and considerations of dynamic topography all suggest upper mantle flow from the Pacific to the Caribbean. We derive new constraints on the nature of seismic anisotropy in the upper mantle of southern Costa Rica from observations of birefringence in teleseismic shear waves. Fast and slow components separate by ∼1 s, with faster waves polarized along the 40°–50° (northeast) direction, near-orthogonally to the Central American convergent margin. Our results are consistent with upper mantle flow from the Pacific to the Caribbean and require an opening in the lithosphere subducting under the region.


2009 ◽  
Vol 6 (4) ◽  
pp. 501-513 ◽  
Author(s):  
F. Tamburini ◽  
K. B. Föllmi

Abstract. The role of nutrients, such as phosphorus (P), and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR) of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17–40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites to deep sea with possible feedback on the carbon cycle.


1994 ◽  
Vol 68 (4) ◽  
pp. 800-807 ◽  
Author(s):  
Annette B. Tucker ◽  
Rodney M. Feldmann ◽  
Charles L. Powell

Speocarcinus berglundi n. sp. is described from the Imperial Formation in Riverside County, California. Although the Imperial Formation spans late Miocene through late Pliocene time, the part of the unit that bears crabs has been radiometrically dated as late Miocene. The identification of a new species was based upon comparison with four extant species and represents the first documented fossil occurrence for the genus. The occurrence of this new species suggests that the genus may have originated in the Pacific and, during the Miocene, dispersed through the Isthmus of Panama to the Caribbean. Two of the specimens exhibit parasitism by Bopyridae (Isopoda).


1992 ◽  
Vol 6 ◽  
pp. 62-62 ◽  
Author(s):  
Anthony Coates ◽  
Jorge Obando ◽  
Herman Gonzalez

The central evolutionary, ecological and paleoceanographic questions of the American tropical Neogene relate to how and during what time the Central American Isthmus formed. Geographically, closure was located between the southern edge of the Chortis Block in southern Nicaragua and the Atrato Valley in Colombia. In this region we describe, on the Caribbean side, five Neogene sedimentary basins. They are the Atrato, Chucunaque, Gatun, Bocas del Toro, and Limon Basins. On the Pacific side the Neogene sediments formed as part of the Central American Trench and are well exposed in a series of uplifted blocks on the Nicoya, Osa and Burica Peninsulas. Our analysis allows 1) a construction of the sequence of contrasting sedimentary environments which characterize the different basins, giving a composite geological history of the isthmus for the Late Neogene and 2) identifies the comparable biofacies from the different basins which allow and constrain the evolutionary and ecological questions to be posed concerning the effect of the isthmus as a biogeographic barrier. Temporally, from it's partial emergence in the Middle Miocene, the isthmus shallows by the Early Pliocene (3.5–3.4 Ma) to less than 50 m (Duque-Caro, 1990) when there is a marked differentiation of shelf marine macrobenthic species between the Caribbean and the Pacific. The evidence from reliably dated, large, diverse exchanges of North and South American vertebrates on land constrains the final closure date to not later than 2.8–2.5 Ma (Marshall, 1988). Given that no conclusive evidence for final closure can come exclusively from a study of sedimentary facies, when depths of less than 50 m are involved, the present window of almost 1 Ma, during which final closure must have occurred, will only be narrowed further by the detailed study of very shallow-water fossil clades and complementary molecular data. Present studies indicate that such clades are abundantly preserved.


Sign in / Sign up

Export Citation Format

Share Document