scholarly journals New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 353
Author(s):  
Domokos Györe ◽  
Luigia Di Nicola ◽  
David Currie ◽  
Finlay M. Stuart

Cosmogenic Ne isotopes are used for constraining the timing and rate of cosmological and Earth surface processes. We combined an automated gas extraction (laser) and purification system with a Thermo Fisher ARGUS VI mass spectrometer for high through-put, high precision Ne isotope analysis. For extra-terrestrial material with high cosmogenic Ne concentrations, we used multi-collection on Faraday detectors. Multiple measurements (n = 26) of 1.67 × 10−8 cm3 air-derived 20Ne yielded an uncertainty of 0.32%, and 21Ne/20Ne = 0.17% and 22Ne/20Ne = 0.09%. We reproduced the isotope composition of cosmogenic Ne in the Bruderheim chondrite and Imilac pallasite in a sub-ten mg sample. For lower Ne amounts that are typical of terrestrial samples, an electron multiplier detector was used in peak jumping mode. Repeated analysis of 3.2 × 10−11 cm3 STP 20Ne from air reproduced 21Ne/20Ne and 22Ne/20Ne with 1.1% and 0.58%, respectively, and 20Ne intensity with 1.7% (n = 103) over a 4-month period. Multiple (n = 8) analysis of cosmogenic Ne in CREU-1 quartz yielded 3.25 ± 0.24 × 108 atoms/g (2 s), which overlaps with the global mean value. The repeatability is comparable to the best data reported in the international experiments performed so far on samples that are 2–5× smaller. The ability to make precise Ne isotope determinations in terrestrial and extra-terrestrial samples that are significantly smaller than previously analysed suggests that the new system holds great promise for studies with limited material.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Frances M. Deegan ◽  
Martin J. Whitehouse ◽  
Valentin R. Troll ◽  
Harri Geiger ◽  
Heejin Jeon ◽  
...  

AbstractMagma plumbing systems underlying subduction zone volcanoes extend from the mantle through the overlying crust and facilitate protracted fractional crystallisation, assimilation, and mixing, which frequently obscures a clear view of mantle source compositions. In order to see through this crustal noise, we present intracrystal Secondary Ion Mass Spectrometry (SIMS) δ18O values in clinopyroxene from Merapi, Kelut, Batur, and Agung volcanoes in the Sunda arc, Indonesia, under which the thickness of the crust decreases from ca. 30 km at Merapi to ≤20 km at Agung. Here we show that mean clinopyroxene δ18O values decrease concomitantly with crustal thickness and that lavas from Agung possess mantle-like He-Sr-Nd-Pb isotope ratios and clinopyroxene mean equilibrium melt δ18O values of 5.7 ‰ (±0.2 1 SD) indistinguishable from the δ18O range for Mid Ocean Ridge Basalt (MORB). The oxygen isotope composition of the mantle underlying the East Sunda Arc is therefore largely unaffected by subduction-driven metasomatism and may thus represent a sediment-poor arc end-member.


1986 ◽  
Vol 64 (11) ◽  
pp. 2693-2699 ◽  
Author(s):  
Robert D. Guy ◽  
David M. Reid ◽  
H. Roy Krouse

Studies on various factors affecting the growth and stable carbon isotope composition of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. were initiated as a step towards interpreting δ13C variations in nature. For isotope analysis, combustion at 900 °C resulted in higher CO2 yield than at 550 °C but did not affect δ13C values. Differences in δ13C between leaves of different insertion level were unimportant, but roots were about 1‰ more positive than shoots. Trends in δ13C with salinity were the same in all plant parts. Depressions of growth by NaCl or Na2SO4 were similar, but plants grown in Na2SO4 displayed a greater shift in δ13C relative to controls. Growth rates were affected more by salinity than were previously reported photosynthetic rates. At typical salinities, δ13C changed linearly with salinity. The supply of nitrate to stressed and unstressed plants had no important influence on δ13C. Growth in polyethylene glycol produced δ13C values consistent with a high level of stress. After a salinity step-up, changes in δ13C were complete within 10 days. During winter, data were found to be heavily influenced by unintentional, human-respired CO2 enrichment. This represents a potentially serious research problem in laboratories of temperate climes.


1986 ◽  
Vol 6 (3) ◽  
pp. 273-285 ◽  
Author(s):  
Myron D. Ginsberg ◽  
David W. Smith ◽  
Mitchell S. Wachtel ◽  
Mayra Gonzalez-Carvajal ◽  
Raul Busto

Validation studies were undertaken to establish a computer-assisted double-label autoradiographic strategy employing [14C]2-deoxyglucose ([14C]2DG) and [14C]iodoantipyrine ([14C]IAP) to measure local CMRglu (LCMRglu) and CBF (LCBF). An organic solvent was used to extract the majority of IAP between first and second film exposures. In contrast to previously published data, all solvents tested produced partial losses of 2DG from tissue, and all allowed 2–6% of IAP to persist even after 5-day washes. Technical-grade chloroform permitted equal retention of unmetabolized and metabolized 2DG. A linear model was established, which was insensitive to the changes in tissue self-absorption that were shown to occur with chloroform extraction. Propagated error in computing tissue [14C]2DG and [14C]IAP was reduced by maximizing IAP extraction (by longer solvent wash times) and by administering 2.5 times as much IAP as 2DG. Fractional 2DG retention was measured in single-label 2DG sections placed on the films, and fractional IAP retention was evaluated by an optimization procedure. With this strategy, double-label values for LCMRglu and LCBF in anesthetized rats agreed with values obtained in matched single-label series to within 5%. The coefficients of variation for the double- and single-label LCMRglu data were virtually identical, whereas the coefficient of variation for double-label LCBF was 1.8 times that of single-label LCBF. The double-label strategy permitted pixel-by-pixel measurement and video display of the LCMRglu/LCBF ratio; the mean value among structures was 0.472 μmol/ml. With proper attention to methodological detail, this double-label strategy shows great promise for routine laboratory application.


Radiocarbon ◽  
2018 ◽  
Vol 60 (5) ◽  
pp. 1611-1620 ◽  
Author(s):  
Yaroslav V Kuzmin ◽  
Vsevolod S Panov ◽  
Viacheslav V Gasilin ◽  
Sergei V Batarshev

ABSTRACTNew paleodietary data were obtained after the discovery and excavation in 2015–2017 of the Cherepakha 13 site in the southern part of Primorye (Maritime) Province in far eastern Russia. The site is located near the coast of Ussuri Bay (Sea of Japan) and belongs to the Yankovsky cultural complex of the Early Iron Age 14C-dated to ca. 3000 BP (ca. 1200 cal BC). The stable isotope composition of the bone collagen for 11 humans and 30 animals was determined. For humans, the following values (with±1 sigma) were yielded: δ13C=–10.2±0.8‰; and δ15N=+12.4±0.3‰. The majority of terrestrial animals show the usual isotopic signals: δ13C=–19.4 ÷ –23.3‰; and δ15N=+4.6÷+6.6‰ (for wolves, up to +10.1‰); dogs, however, have an isotopic composition similar to humans: δ13C= –11.7±1.2‰; and δ15N=+12.4±0.4‰. Marine mammals have common values for pinnipeds: δ13C=–13.7 ÷ –14.6‰; and δ15N=+17.4 ÷ +18.0‰. The main food resources for the population of Cherepakha 13 site were (1) marine mollusks, fish, and mammals; and (2) terrestrial mammals; and possibly C4 plants (domesticated millets).


2021 ◽  
Author(s):  
Akhtar Jahan ◽  
Mohd Usman Khan ◽  
Nachiketa Rai ◽  
Abhayanand Singh Maurya ◽  
Sudhir Kumar

<p>Stable isotope analysis of hydrogen and oxygen is one of the important methods used to model the hydrological cycle. Oxygen and hydrogen isotopic investigation of river water, its tributaries, and groundwater of its catchment from the Satluj basin was undertaken to estimate the contributions of the main sources comprising discharge during major periods throughout a hydrologic year.</p><p>Estimation of the snow/glaciers melt contribution is also very important for tracing the sources and processes regulating the flow from the provenance and reservoirs in the context of global warming, for estimating flood flow, and for other water resource development activities in large parts of the Indian subcontinent. Water samples were collected during the non-monsoon season at increasing altitudes. In this work, in addition to stable isotopes, we also assessed the water quality using various physicochemical parameters and geochemistry of the water.</p><p>From isotopic analyses of river water samples, the mean value of the δ<sup>18</sup>O was found to be ~ -13‰, and the mean value of δD was found to be~ -85‰. For the samples from Satluj tributaries, the mean value of the δ<sup>18</sup>O was ~ -11‰, and the mean value of δD was ~ -69‰. A mean value of -8.4‰, was found based on the δ<sup>18</sup>O measurements of the groundwater samples, while the average δD value was found to be ~ -55‰.</p><p>For the mainstream and tributary, LWL, y = 8.2604x +20.208, and range of d-excess (>10‰) and y = 8.2079x + 22.182 and d-excess > 10‰ indicates a system recharged by sources of recycled moisture derived from continental sources in addition to monsoonal climates. For the groundwater data, the slope is 6.7, and d-excess ranges from 7‰ to 17‰. These observations are suggestive of the monsoonal source of Indian Ocean precipitation that has experienced significant evaporation during the non-monsoon season.</p><p>Our new data clearly shows that the surface water whether mainstream, tributary, and groundwater isotopes are homogenized from regional trends in precipitation, modified by evaporation, and are thus greatly influenced by latitude, elevation, and patterns of climate.</p><p> </p>


2019 ◽  
Vol 16 (23) ◽  
pp. 4613-4625 ◽  
Author(s):  
Anne Alexandre ◽  
Elizabeth Webb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental relative humidity (RH) is a key climate parameter, but there is a lack of quantitative RH proxies suitable for climate model–data comparisons. Recently, a combination of climate chamber and natural transect calibrations have laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ′18O and 17O-excess) of phytoliths, that can preserve in sediments, as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ′18O and 17O-excess of plant water and phytoliths be examined. Here, the effects of grass leaf length, leaf development stage and day–night alternations are addressed from growth chamber experiments. The triple oxygen isotope compositions of leaf water and phytoliths of the grass species F. arundinacea are analysed. Evolution of the leaf water δ′18O and 17O-excess along the leaf length can be modelled using a string-of-lakes approach to which an unevaporated–evaporated mixing equation must be added. We show that for phytoliths to record this evolution, a kinetic fractionation between leaf water and silica, increasing from the base to the apex, must be assumed. Despite the isotope heterogeneity of leaf water along the leaf length, the bulk leaf phytolith δ′18O and 17O-excess values can be estimated from the Craig and Gordon model and a mean leaf water–phytolith fractionation exponent (λPhyto-LW) of 0.521. In addition to not being leaf length dependent, δ′18O and 17O-excess of grass phytoliths are expected to be impacted only very slightly by the stem vs. leaf biomass ratio. Our experiment additionally shows that because a lot of silica polymerises in grasses when the leaf reaches senescence (58 % of leaf phytoliths in mass), RH prevailing during the start of senescence should be considered in addition to RH prevailing during leaf growth when interpreting the 17O-excess of grass bulk phytoliths. Although under the study conditions 17O-excessPhyto do not vary significantly from constant day to day–night conditions, additional monitoring at low RH conditions should be done before drawing any generalisable conclusions. Overall, this study strengthens the reliability of the 17O-excess of phytoliths to be used as a proxy of RH. If future studies show that the mean value of 0.521 used for the grass leaf water–phytolith fractionation exponent λPhyto-LW is not climate dependent, then grassland leaf water 17O-excess obtained from grassland phytolith 17O-excess would inform on isotope signals of several soil–plant-atmosphere processes.


2013 ◽  
Vol 9 (1) ◽  
pp. 335-352 ◽  
Author(s):  
K. M. K. Wilkie ◽  
B. Chapligin ◽  
H. Meyer ◽  
S. Burns ◽  
S. Petsch ◽  
...  

Abstract. Stable isotope data from lipid biomarkers and diatom silica recovered from lake sediment cores hold great promise for paleoclimate and paleohydrological reconstructions. However, these records rely on accurate calibration with modern precipitation and hydrologic processes and only limited data exist on the controls on the δD values for n-alkanoic acids from plant leaf waxes. Here we investigate the stable isotopic composition of modern precipitation, streams, lake water and ice cover, and use these data to constrain isotope systematics of the Lake El'gygytgyn Basin hydrology. Compound-specific hydrogen isotope ratios determined from n-alkanoic acids from modern vegetation are compared with modern precipitation and lake core top sediments. Multi-species net (apparent) fractionation values between source water (precipitation) and modern vegetation (e.g., ϵwax/precip mean value is −107 ± 12‰) agree with previous results and suggest a consistent offset between source waters and the δD values of alkanoic acids. We conclude that although there may be some bias towards a winter precipitation signal, overall δD values from leaf wax n-alkanoic acids record annual average precipitation within the El'gygytgyn Basin. A net fractionation calculated for 200-yr-integrated lake sediments yields ϵ30/precip = −96 ± 8‰ and can provide robust net "apparent" fractionation to be used in future paleohydrological reconstructions.


2012 ◽  
Vol 18 ◽  
pp. 101-114 ◽  
Author(s):  
Hagit P. Affek

Clumped isotopes geochemistry measures the thermodynamic preference of two heavy, rare, isotopes to bind with each other. This preference is temperature dependent, and is more pronounced at low temperatures. Carbonate clumped isotope values are independent of the carbonate δ13C and δ18O, making them independent of the carbon or oxygen composition of the solution from which the carbonate precipitated. At equilibrium, it is therefore a direct proxy for the temperature in which the carbonate mineral formed. In most cases, carbonate clumped isotopes record the temperature of carbonate formation, irrespective of the mineral form (calcite, aragonite, or bioapatite) or the organism making it. The carbonate formation temperatures obtained from carbonate clumped isotope analysis can be used in conjunction with the δ18O of the same carbonate, to constrain the oxygen isotope composition of the water from which the carbonate has precipitated. There are, however, cases of deviation from thermodynamic equilibrium, where both clumped and oxygen isotopes are offset from the expected values. Such carbonates must be characterized and calibrated separately. For deep-time applications, special care must be paid to the preservation of the original signal, in particular with respect to diagenetic alteration associated with atomic scale diffusion that may be undetectable by common tests for diagenesis.


2019 ◽  
Vol 104 (10) ◽  
pp. 1503-1520 ◽  
Author(s):  
Katharina Marger ◽  
Cindy Luisier ◽  
Lukas P. Baumgartner ◽  
Benita Putlitz ◽  
Barbara L. Dutrow ◽  
...  

Abstract A series of tourmaline reference materials are developed for in situ oxygen isotope analysis by secondary ion mass spectrometry (SIMS), which allow study of the tourmaline compositions found in most igneous and metamorphic rocks. The new reference material was applied to measure oxygen isotope composition of tourmaline from metagranite, meta-leucogranite, and whiteschist from the Monte Rosa nappe (Western Alps). The protolith and genesis of whiteschist are highly debated in the literature. Whiteschists occur as 10 to 50 m tube-like bodies within the Permian Monte Rosa granite. They consist of chloritoid, talc, phengite, and quartz, with local kyanite, garnet, tourmaline, and carbonates. Whiteschist tourmaline is characterized by an igneous core and a dravitic overgrowth (XMg > 0.9). The core reveals similar chemical composition and zonation as meta-leucogranitic tourmaline (XMg = 0.25, δ18O = 11.3–11.5‰), proving their common origin. Dravitic overgrowths in whiteschists have lower oxygen isotope compositions (8.9–9.5‰). Tourmaline in metagranite is an intermediate schorl-dravite with XMg of 0.50. Oxygen isotope data reveal homogeneous composition for metagranite and meta-leucogranite tourmalines of 10.4–11.3‰ and 11.0–11.9‰, respectively. Quartz inclusions in both meta-igneous rocks show the same oxygen isotopic composition as the quartz in the matrix (13.6–13.9‰). In whiteschist the oxygen isotope composition of quartz included in tourmaline cores lost their igneous signature, having the same values as quartz in the matrix (11.4–11.7‰). A network of small fractures filled with dravitic tourmaline can be observed in the igneous core and suggested to serve as a connection between included quartz and matrix, and lead to recrystallization of the inclusion. In contrast, the igneous core of the whiteschist tourmaline fully retained its magmatic oxygen isotope signature, indicating oxygen diffusion is extremely slow in tourmaline. Tourmaline included in high-pressure chloritoid shows the characteristic dravitic overgrowth, demonstrating that chloritoid grew after the metasomatism responsible for the whiteschist formation, but continued to grow during the Alpine metamorphism. Our data on tourmaline and quartz show that tourmaline-bearing white-schists originated from the related meta-leucogranites, which were locally altered by late magmatic hydrothermal fluids prior to Alpine high-pressure metamorphism.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 987
Author(s):  
Lianjun Feng ◽  
Hongwei Li ◽  
Tiejun Li

Hematite is a potential mineral for reconstructing the oxygen isotope composition and paleotemperature of paleowater. A highly accurate analysis of oxygen isotopes is essential. However, relative to other oxygenated minerals, we lack hematite reference materials that allow for internationally comparable analyses between different laboratories. To address this issue, we attempted to perform bulk rock oxygen isotope analysis on five hematite reference materials (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008, Harvard 92649). Meanwhile, the oxygen isotope ratios of iron oxides (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008) were obtained by mass balance involving other oxygen-bearing minerals such as quartz and silicates. In addition, the oxygen isotope ratios of iron oxides in an oolitic hematite (ca. 1.65 billion years ago) are consistent with the results of previous analyses of this class of minerals.


Sign in / Sign up

Export Citation Format

Share Document