scholarly journals Importance of the Spatial Distribution of Rare Earth Elements in the Bottom Sediments of Reservoirs as a Potential Proxy for Tracing Sediments Sources. A Case Study in the Dominican Republic

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 490
Author(s):  
Rita Fonseca ◽  
Joana Fonseca Araújo ◽  
Catarina Gomes Pinho

The geochemical composition of rare earth elements (REE) in the bottom sediments of two Dominican reservoirs and in soils from their catchments was studied to identify possible sources of the deposited materials. Knowledge of the origin of the sediments will serve to control the excessive rates of erosion and sedimentation that occur annually due to periodic extreme climatic events that promote excessive silting of the lakes, followed by loss of storage capacity and degradation of water quality. The REE contents of sediments and soils were normalized to the North American Shale Composite (NASC) and the ratio of light/heavy rare earths (LREE/HREE ratio), Ce and Eu anomalies, and some fractionation parameters were determined. The REE patterns are more homogeneous in the sediments, indicating uniform sedimentation in both deposits. The sediment data reflect depletion of REE from the sources, enrichment of light REE (LREE) and some middle REE (MREE), and positive Eu and Ce anomalies. All data were plotted in correlation diagrams between some fractionation parameters of light–middle–heavy REE and anomalies of Ce and Eu. The similarity of the ratios between these parameters in all samples and the overlap of data from soils and rocks on the sediment projection in the diagrams allowed a good discrimination of the main sources of the materials.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariusz Sojka ◽  
Adam Choiński ◽  
Mariusz Ptak ◽  
Marcin Siepak

AbstractThe objective of this study was to analyse spatial variability of the trace elements (TEs) and rare earth elements (REEs) concentration in lake bottom sediments in Bory Tucholskie National Park (BTNP); Poland. The following research questions were posed: which factors have a fundamental impact on the concentration and spatial variability of elements in bottom sediments, which of the elements can be considered as indicators of natural processes and which are related to anthropogenic sources. The research material was sediments samples collected from 19 lakes. The concentrations of 24 TEs and 14 REEs were determined. The analyses were carried out using the inductively coupled plasma mass spectrometry (ICP-QQQ). Cluster analysis and principal component analysis were used to determine the spatial variability of the TEs and REEs concentrations, indicate the elements that are the indicators of natural processes and identify potential anthropogenic sources of pollution. The geochemical background value (GBV) calculations were made using 13 different statistical methods. However, the contamination of bottom sediments was evaluated by means of the index of geo-accumulation, the enrichment factor, the pollution load index, and the metal pollution index. The BTNP area is unique because of its isolation from the inflow of pollutants from anthropogenic sources and a very stable land use structure over the last 200 years. This study shows high variability of TE and REE concentrations in lake sediments. The values of geochemical indices suggest low pollution of lakes bottom sediments. It was found that TEs originated mainly from geogenic sources. However, the concentrations of Li, Ni, Sc, Se, Be, Se, Ag, Re, Tl, Cd, Sb and U may be related to the impact of point sources found mainly in the Ostrowite Lake. Almost all REEs concentrations were strongly correlated and their presence was linked to with geochemical processes. The elements allowing to identify natural processes and anthropogenic pollution sources were Cr, Co, Cu, Ag, Cd, Zn, Bi, Re, Ba, Al and Rb in TEs group and Nd, Gd, Yb, Lu, Eu, Dy and Ce in REEs group. The analysis shows high spatial variability of TE and REE concentrations in lake sediments. The values of geochemical indices point to low pollution of lakes sediments. The anthropogenic sources only for two lakes had an impact on concentrations of selected TEs and REEs. The analyses allowed to identify elements among TEs and REEs documenting geochemical processes and those indicating anthropogenic sources of pollution.


2016 ◽  
Vol 6 (1) ◽  
pp. 43 ◽  
Author(s):  
Anthony Temidayo Bolarinwa ◽  
Adebimpe Atinuke Adepoju

Trace and Rare Earth Elements (REEs) data are used to constrain the geochemical evolution of the amphibolites from Ifewara in the Ife-Ilesha schist belt of southwestern Nigeria. The amphibolites can be grouped into banded and sheared amphibolites. Major element data show SiO2 (48.34%), Fe2O3 (11.03-17.88%), MgO (5.76-9.90%), CaO (7.76-18.6%) and TiO2 (0.44-1.77%) contents which are similar to amphibolites in other schist belts in Nigeria. The Al2O3 (2.85-15.55%) content is varied, with the higher values suggesting alkali basalt protolith. Trace and rare earth elements composition reveal Sr (160-1077ppm), Rb (0.5-22.9ppm), Ni (4.7-10.2ppm), Co (12.2-50.9 ppm) and Cr (2-7ppm). Chondrite-normalized REE patterns show that the banded amphibolites have HREE depletion and both negative and positive Eu anomalies while the sheared variety showed slight LREE enrichment with no apparent Eu anomaly. The study amphibolites plot in the Mid Oceanic Ridge Basalts (MORB) and within plate basalt fields on the Zr/Y vs Zr discriminatory diagrams. They are further classified as volcanic arc basalt and E-type MORB on the Th- Hf/3- Ta and the Zr-Nb-Y diagrams. The amphibolites precursor is considered a tholeiitic suite that suffered crustal contamination, during emplacement in a rifted crust.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Aimei Zhu ◽  
Xuefa Shi ◽  
Dirk Nürnberg ◽  
...  

Investigating the composition and distribution of pelagic marine sediments is fundamental in the field of marine sedimentology. The spatial distributions of surface sediment are unclear due to limited investigation along the Emperor Seamount Chain of the North Pacific. In this study, a suite of sedimentological and geochemical proxies were analyzed, including the sediment grain size, organic carbon, CaCO3, major and rare earth elements of 50 surface sediment samples from the Emperor Seamount Chain, spanning from ∼33°N to ∼52°N. On the basis of sedimentary components, we divide them into three Zones (I, II, and III) spatially with distinct features. Sediments in Zone I (∼33°N–44°N) and Zone III (49.8°N–53°N) are dominated by clayey silt, and mainly consist of sand and silty sand in Zone II. The mean grain size of the sortable silt shows that the hydrodynamic condition in the study area is significantly stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500 m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth of 4,000 m is the carbonate compensation depth of the study area. Strong positive correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk sediments indicate pronounced contributions of terrigenous materials from surrounding continent mass to the study area. Furthermore, the eolian dust makes contributions to the composition of bulk sediments as confirmed by rare earth elements. There is no significant correlation between grain size and major and minor elements, which indicates that the sedimentary grain size does not exert important effects on terrigenous components. There is significant negative δCe and positive δEu anomalies at all stations. The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal of seawater. The positive Eu anomaly indicates widespread volcanism contributions to the study area from active volcanic islands arcs around the North Pacific. The relative contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water depth in the study area.


Author(s):  
B. N. Abramov

The distribution of rare-earth elements (REE) in ores of gold deposits of East Transbaikalia has shown that the ore-bearing magma chambers have different depths and degrees of differentiation. The greatest degree of differentiation was within the magmatic foci (Eu/Eu* — 0,29—0,32; Rb/Sr — 0,98—1,40), which are the sources of gold-quartz-arsenopyrite ores, the magmatic sources of the gold-quartz and gold-sulfide-quartz ores (Eu/Eu* — 0,53—0,72; Rb/Sr of 0,10 to 0,54) had lesser degree of differentiation. Magma chambers that are sources for the gold-quartz-arsenopyrite ores (Eu/Sm — 0,08—0,14), were at shallower depths than those for gold-quartz and gold-sulfide-quartz ores (Eu/Sm — 0,11—0,19). The formation of gold-quartz-arsenopyrite ores took place at the magma chambers, largely enriched in volatile components, it is indicated by the existence of a significant tetrad effects in REE patterns of (T1-4 - 0,80; 1,15; 1,16).


2014 ◽  
Vol 6 (15) ◽  
pp. 6125-6132 ◽  
Author(s):  
Wenjun Li ◽  
Xindi Jin ◽  
Bingyu Gao ◽  
Changle Wang ◽  
Lianchang Zhang

Comparison between the REE data of this work and literature values by Z. S. Yu et al., Sampaio et al., Dulski et al., and Bau et al. in reference materials FER-2 (a) and FER-3 (b) using PAAS-normalized REE patterns.


2020 ◽  
Vol 57 (5) ◽  
pp. 630-646
Author(s):  
Xi-Tao Nie ◽  
Jing-Gui Sun ◽  
Feng-Yue Sun ◽  
Bi-Le Li ◽  
Ya-Jing Zhang ◽  
...  

The Shimadong porphyry Mo deposit is located in eastern Yanbian, in the eastern part of the north margin of the North China craton, northeastern China. Here, we present the whole-rock major and trace elements, zircon U–Pb and Hf isotope data, and molybdenite Re–Os data for the Shimadong deposit. The porphyry was emplaced at 163.7 ± 0.9 Ma and the mineralization at 163.1 ± 0.9 Ma, suggesting that the mineralization was associated with the emplacement of the Shimadong porphyritic monzogranite. The porphyritic monzogranite had high SiO2 (70.09–70.55 wt%) and K2O + Na2O (7.98–8.27 wt%) contents and low MgO (0.51–0.53 wt%), TFeO (2.4–2.47 wt%), CaO (2.19–2.26 wt%), and K2O/Na2O (0.8–0.82) contents. The porphyry was rich in large ion lithophile elements Rb, Ba, K, and Sr, depleted in high-field-strength elements Y, Nb, Ta, P, and Ti, without significant Eu anomaly (δEu = 0.86–1.00), and depleted in heavy rare earth elements with light rare earth elements/heavy rare earth elements = 18.25–20.72 and (La/Yb)N = 27.10–34.67. These features are similar to those of adakitic rocks derived from a thickened lower crust. Zircon εHf(t) values for the porphyritic monzogranite ranged from –19.2 to 6.3, and the two-stage Hf model ages (TDM2) were 2421–811 Ma. These data indicate that the primary magma of the Shimadong porphyritic monzogranite was mainly derived from partial melting of the thickened lower crust consisting of juvenile crust and pre-existing crust. Combined with the results of previous studies, our data suggest that the Shimadong porphyry Mo deposit was emplaced along an active continental margin related to the westward subduction of the paleo-Pacific Plate.


2019 ◽  
Vol 489 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Abhijit Bhattacharya

AbstractIn the Late Archean north-trending Closepet pluton, trains of euhedral K-feldspar phenocrysts and matrix-supported idiomorphic K-feldspar crystals in the central part of the pluton define oblique-to-pluton margin steep-dipping east/ENE-trending magmatic fabrics. The magmatic fabric is defined by phenocryst-rich and phenocryst-poor layers, with the euhedral porphyries continuous across the layers. The fabrics are near-orthogonal to the gently-dipping gneissic layers in the host gneisses. The fabrics curve adjacent to locally-developed north/NNE-trending melt-hosted dislocations parallel to the axial planes of horizontal/gently-plunging north-trending upright folds in the host gneisses. In the pluton interior, both fabrics in the intrusives formed at supra-solidus conditions, although the volume fraction of melts diminished drastically due to cooling/melt expulsion. At the pluton margin, the north-trending fabric is penetrative and post-dates magma solidification. Within the pluton, the major element oxides, rare earth elements, anorthite contents in plagioclase, and (Mg/Fe + Mg) ratios in biotite decrease with increasing SiO2 from phenocryst-rich (up to 75% by volume) granodiorite to phenocryst-poor (<15 vol%) granite that broadly correspond to minimum melt composition. The chemical-mineralogical variations in the pluton is attributed to deformation-driven ascent of magma with heterogeneous crystal content, ascending at variable velocities (highest in crystal-poor magma) along oblique-to-pluton margin east/ENE-trending extensional fractures induced by dextral shearing.


2019 ◽  
Vol 26 (9) ◽  
pp. 9146-9160 ◽  
Author(s):  
Sanjay K. Mandal ◽  
Raghab Ray ◽  
Aridane G. González ◽  
Vasileios Mavromatis ◽  
Oleg S. Pokrovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document