scholarly journals Archaeometric Characterisation of Decorated Pottery from the Archaeological Site of Villa dei Quintili (Rome, Italy): Preliminary Study

Geosciences ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 172 ◽  
Author(s):  
Michela Ricca ◽  
Giuseppe Paladini ◽  
Natalia Rovella ◽  
Silvestro Antonio Ruffolo ◽  
Luciana Randazzo ◽  
...  

This work focused on the study of decorated pottery dated back to the 16th century from the Roman archaeological site of Villa dei Quintili, a monumental complex located in the south-eastern part of Rome (Italy). A minero-petrographic and geochemical study was undertaken to analyse five archaeological samples in order to define textural features and raw materials used for their production, along with the chemical and physical composition of the superficial decorative glazed coatings. For this purpose, different analytical methods were used, such as polarising optical microscope (POM), X-ray diffraction (XRD), micro-Raman spectroscopy, X-Ray fluorescence (XRF), and electron microprobe analysis coupled with energy dispersive spectrometry (EMPA-EDS). The results of such a multidisciplinary approach allowed us to achieve important results crucial to recognise the shards as majolica of the Renaissance period, improving knowledge about manufacturing processes of these renowned painted ceramic artefacts.

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 393
Author(s):  
Ainhoa Alonso-Olazabal ◽  
Luis Angel Ortega ◽  
Maria Cruz Zuluaga ◽  
Graciela Ponce-Antón ◽  
Javier Jiménez Echevarría ◽  
...  

This study characterises the mortar materials used in the construction of walls and floors at the Arroyo de la Dehesa de Velasco site, located near the Roman city of Uxama Argaela (the modern Burgo de Osma—Ciudad de Osma, Soria, Spain). Multilayer mortars have been characterised by petrographic, mineralogical (X-ray diffraction and scanning electron microscopy with energy dispersive analyses and geochemical analysis (X-ray fluorescence). Additionally, radiocarbon dating of the mortar binder fraction was performed in order to establish the chronology of the building in the absence of other archaeological chronological records. The results showed that similar siliceous aggregates and lime binders were used in the fabrication of multilayer system mortars. Some multilayer wall mortars show ceramic fragments or brick powder to produce hydraulic mortars and improve the resistance to moisture. The raw materials used for the construction of the site were of local origin and the construction was built during the first century BC, according to radiocarbon dating.


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Andrea Gil-Torrano ◽  
Auxiliadora Gómez-Morón ◽  
José María Martín ◽  
Rocío Ortiz ◽  
Mª del Camino Fuertes Santos ◽  
...  

The archaeological site of Cercadilla (Cordoba, Spain) includes a complete chronological sequence from the 3rd to 12th centuries. The most relevant monument is a Roman palace dated between the end of the 3rd century and the beginning of the 4th century AD. It is believed that it was the headquarters of the Emperor Maximiano Herculeo. A bathtub with mural paintings has been found in the thermal zone of the palace. Regarding the occupation of the archaeological site in the medieval period, it should be pointed out that two houses with mural paintings were found; these belong to the Caliphal era (10th-11th centuries). During the Caliphal era, the archaeological site was mostly occupied by one of the large suburbs surrounding the walled city. Cercadilla was gradually abandoned; this process starts at the beginning of the 11th century. This study is focused on the analysis of pigments and preparatory layers of red and white mural paintings of the Roman period in the bath zone and on the analysis of pigments in mural paintings in two houses of the Caliphal era. In the thermal zone, the walls have a white mural painting with vertical and horizontal red bands, while the walls in the two Caliphal houses present the red mural painting decorated with white stripes. Techniques such as Optical Microscopy (OM), Scanning Electron Microscopy in combination with Energy Dispersive X-ray Microanalysis (SEM-EDX), X-ray Diffraction (XRD), micro X-ray Diffraction (μ-XRD), Wavelength Dispersive X-ray Fluorescence (WD-XRF), and Fourier Transform-Infrared Spectroscopy (FT-IR) have been used to study the mural paintings of this archaeological site. The results allowed to determine the composition of the materials used and to understand the differences between the technologies employed in Roman and Caliphal remains studied.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 251
Author(s):  
Oana-Cătălina Mocioiu ◽  
Irina Atkinson ◽  
Ana-Maria Mocioiu ◽  
Simona Neagu ◽  
Robert Ruginescu ◽  
...  

One of the current research objectives is the development of new films for the conservation of glass heritage objects. The value of historical glass objects is given by the technology and raw materials used in production as well as their transparency and color. Their colors are correlated with oxide composition rich in transitional metals, which decrease resistance of corrosive agents from the atmosphere. In this paper, SiO2-ZnO gels have been designed to protect historical glass objects. The sol–gel method used to obtain gels is a powerful tool for functionalizing different materials. An important functionalization is the antibacterial activity. By applying a gel, the coated material is able to decrease the growth of bacteria. After deposition, some gels must be strengthened by heat treatment. The effect of ZnO content (10 mol% and 20 mol%) on the properties of the studied gels was investigated by Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and antibacterial tests. Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and the halotolerant bacterium, Virgibacillus halodenitrificans, isolated from a salt crystal from Unirea mine, Slănic Prahova, Romania, were used. The gel Gel 2 (SiO2-ZnO (20 mol%)) showed the best properties.


KOVALEN ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 208-213
Author(s):  
Mukhtar Ghozali ◽  
Gamaliel Tanaka ◽  
Muhammad Misbahussalam ◽  
Tifa Paramitha

ZSM-5 is a synthetic zeolite which has a complex production process and is affected by operating conditions, such as temperature and time. In this study, synthesized ZSM-5 without template by hydrothermal method. An autoclave reactor was used for the hydrothermal process. The aim of this study was to investigate the effect of varied hydrothermal times of 24 and 48 hours with a hydrothermal temperature of 180oC on the characteristic of ZSM-5. The raw materials used were silica oxide and aluminum hydroxide as a source of silica and alumina. The synthesis results were characterized using X-Ray Diffraction (XRD). Based on XRD results, the best result was obtained in performed at 48 hours hydrothermal time indicating the formation of ZSM-5 material at the 22.2o position. The percentage crystallinity of the sample at the hydrothermal time of 48 hours was 51.3%.


2014 ◽  
Vol 1077 ◽  
pp. 135-138
Author(s):  
Luiz Oliveira Veriano dalla Valentina ◽  
Marilena Valadares Folgueras ◽  
Wanessa Rejane Knop ◽  
Maria Cristina Pacheco do Nascimento ◽  
Glaucia Aparecida Prates

As the raw materials used in the ceramic materials manufacturing are natural, it is important to use them as a alternative materials, thus decreasing the elements demand taken from nature. This paper aims the characterization of foundry solid powder exhaust from a brazilian company located in Joinville - SC as an alternative raw material for ceramic coating by X-ray diffraction (XRD), thermal analysis (DSC) and thermogravimetric (TG). The dust depletion is caused in the manufacturing mold sand process, when the bentonita (clay), silica sand and coal during the metal parts production are mixed in green sand production. The raw materials were characterized through X-ray diffraction (XRD), thermal (DSC) and thermogravimetric analisys (TG). The atomized powder thermogravimetric analysis curve shows three intervals associated with the mass loss and it is typical of clay commercial application.


2016 ◽  
Vol 869 ◽  
pp. 191-194
Author(s):  
Carolina del Roveri ◽  
R.A. Cunha ◽  
Antenor Zanardo ◽  
Letícia Hirata Godoy ◽  
Maria Margarita Torres Moreno ◽  
...  

The Santa Gertrudes ́ Ceramic Polo is the Brazilian region with national and international prominence in the manufacturing of ceramic tiles. Some raw materials used by ceramic industry and coatings industries in this region were characterized in terms of chemical-mineralogical and microscopic view, in order to promote the best technological characterization of them. For this, chemical analysis of major elements and trace X-ray diffraction and microscopic analysis by SEM, TEM and Electron microprobe were performed by ICP-MS. The results showed that the raw materials commonly referred to as "clays" are actually constituted by various mineral phases, which directly influence the properties of the same ceramics. Also showed that, by virtue of this constitution, different formulations can be developed, using the best raw materials found in the region of Santa Gertrudes, SP.


2010 ◽  
Vol 74 (4) ◽  
pp. 747-771 ◽  
Author(s):  
C. Rathossi ◽  
P. Tsolis-Katagas ◽  
C. Katagas

AbstractA ‘metamorphic vermiculite’-like phase was identified in Ca-rich ancient ceramic sherds from excavations in NW Peloponnese, Greece. Archaeometric investigations have shown that the raw materials used in the production of ancient ceramics were derived from local Plio-Pleistocene sediments. Analysis by X-ray diffraction and scanning electron microscopy-energy dispersive spectroscopy showed that ‘metamorphic vermiculite’ is a common constituent phase of these sediments occurring in three texturally different types: as interstratified white mica-chlorite and chlorite-vermiculite, and white mica-(white mica-chlorite) stacks. In an attempt to elucidate the thermal transformation of ‘metamorphic vermiculite’ present in the calcareous raw materials, we produced experimental ceramics made from these local raw materials and fired them at 700, 750, 850, 950 and 1050°C in a static air furnace. The mixed-layered chlorite-vermiculite was transformed completely at ∼800°C contributing to the formation of new high-Tminerals. The two other types of ‘metamorphic vermiculite’ retain their original lath-like shape up to 1050°C and only a few crystals show that they have undergone complete transformation at this temperature. In the latter crystals, numerous nanocrystals were formed sub-parallel to the former cleavages of ‘metamorphic vermiculite’ pseudomorphs, suggesting their contribution to the nucleation of high-Tminerals (i.e. ferrian aluminian diopside, spinel, Fe oxides) by reactions with the available CaO. It is suggested that the firing conditions (i.e. maximum reaction temperature of 1050°C, reaction time of 1 h, oxygen atmosphere) which promote disequilibrium reactions, and the greater contribution of the white mica constituent against chlorite in some of the initial structures of ‘metamorphic vermiculite’ may be responsible for the delay of its thermal decomposition at 1050°C.


2014 ◽  
Vol 803 ◽  
pp. 135-143 ◽  
Author(s):  
S.Z. Sharifah Zaliha ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hussin Kamarudin ◽  
A. Fauziah

Soft soil has been associated to many problems especially in engineering field. Continues research and studies are done to find other alternatives in soil stabilization that environmental friendly and economic. Geopolymerization is one of the developing fields that can fulfill those requirements. In this preliminary study, three samples of soil (Soil 1, 2 and 3) were examined to investigate their potential for geopolymerization method based on their characterization. X-ray fluorescence, X-ray diffraction and scanning electron microscope were conducted. From the results, the soils do have potential, however, further investigations need to be done after this study to evaluate whether the soils are suitable using geopolymerization method for soil stabilization.


Cerâmica ◽  
2015 ◽  
Vol 61 (360) ◽  
pp. 414-419 ◽  
Author(s):  
F. B. Siqueira ◽  
J. N. F. Holanda

Abstract In the cellulose industry the Kraft process is widely used to produce cellulose. This process generates huge volumes of inorganic solid wastes, including the grits waste. In Brazil, the final disposal of this solid waste is of high economical and environmental interest. The present work assesses the influence of the addition of grits waste on the densification behavior of soil-cement bricks. The raw materials used were soil, Portland cement, and grits waste. Soil-cement bricks containing up to 30 wt.% grits waste in partial replacement of Portland cement were prepared by uniaxial pressing and cured for 28 days. The following technological properties were determined: water absorption, compressive strength, and durability. The microstructure was evaluated by scanning electron microscopy and X-ray diffraction. The experimental results indicated that the addition of grits waste influenced positively the densification behavior of the soil-cement bricks. Moreover, the grits waste could be incorporated into the soil-cement brick composition up to 20 wt.% as a partial replacement of Portland cement.


2010 ◽  
Vol 25 (3) ◽  
pp. 264-269 ◽  
Author(s):  
Cristina Vázquez ◽  
Oscar Martín Palacios ◽  
Larysa Darchuk ◽  
Lué-Merú Marcó Parra

In this work synchrotron radiation X-ray diffraction technique was successfully applied for the analysis of pigments found in excavation at Carriqueo rock shelter, Neuquén, Argentina. The pigment samples of orange, red, and brown shades were collected from different levels of this archaeological site and compared with a suspected source of provenance (La Oficina creek). X-ray diffraction patterns of several yellowish, reddish, and red pigments showed the presence of haematite, goethite, kaolinite, and quartz. The majority of Carriqueo collected samples belonged to the same group of the suspected source, having haematite and quartz as main crystalline phases. The results indicate that the raw material from La Oficina is the source of most of the pigments found at Carriqueo. The present work helps us to understand the strategy of supplying raw materials by human groups in the North Patagonia region.


Sign in / Sign up

Export Citation Format

Share Document