scholarly journals Classification of Red-Bed Rock Mass Structures and Slope Failure Modes in South China

Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 273 ◽  
Author(s):  
Cuiying Zhou ◽  
Xu Yang ◽  
Yanhao Liang ◽  
Zichun Du ◽  
Zhen Liu ◽  
...  

Red beds are Meso–Cenozoic continental sedimentary strata that are mainly composed of gravel stone, sandstone, siltstone, mudstone, and shale and occasionally have interlayers of limestone, halite, and gypsum. As a typical rock mass, red beds are widely distributed throughout South China. In a typical tropical and subtropical continental environment, red beds are the product of multiple sedimentary cycles, which have resulted in complicated rock mass structures that play an important role in rock mass stability. It is thus of great significance to investigate the influence of different rock mass structures on the stability of red-bed slopes. In this paper, the geological formation history of red beds in South China is described. The main features of red-bed rock mass slopes in South China are discussed. The main combinations of inner geomechanical structures comprise: (1) mega-thick soft rock structures; (2) mega-thick hard rock structures; (3) thick hard rock structures with weak intercalation; and (4) soft–hard interbedded structures. In addition, the features of slope failure are analyzed, and four common failure modes are identified from the statistical data: (a) weathering spalling and scouring; (b) rock falls; (c) landslides; and (d) tensile dumping.

2019 ◽  
Vol 7 (5) ◽  
pp. 155 ◽  
Author(s):  
Zhen Liu ◽  
Xinfu He ◽  
Cuiying Zhou

As a typical representative of red beds, the softening and disintegration of red sandstone when it encounters water is an important cause of initiated engineering disasters. However, research on the softening of this kind of rock has mainly focused on the still water–rock interaction. There is still a lack of quantitative analysis and a mechanistic explanation for the basic experimental study of dynamic water–rock interactions. Therefore, based on the independently developed multifunctional open channel hydraulic test equipment, the still water was used as the reference by designing the saturation test of red sandstone under two typical flow patterns—laminar flow and turbulent flow—and combined with a three-dimensional numerical simulation; specifically, the chemical, physical and mechanical effects of different flow patterns on the softening of red sandstone are discussed, and the mechanism of the influence of different flow patterns on the softening of red sandstone was further revealed. The results show that under different flow patterns, as the flow of water increased, the alkalinity of the circulating solution became stronger, the speed of stabilization of the ion concentration became faster, the development of the microscopic structure of the corresponding rock became higher and the decrease in mechanical strength became greater. The flow state affects the processes of rock softening and breaking by acting on the rock from the three aspects of chemistry, physics and mechanics. The study makes up for the deficiency of the quantitative analysis index of rock softening under dynamic water conditions and further improves the influence mechanism of different flow patterns on soft rock softening in red beds under dynamic water conditions. This research also provides a specific method for the protection of estuarine and coastal bank slopes with rich red-bed soft rock dissection under different flow patterns.


2014 ◽  
Vol 602-605 ◽  
pp. 594-597 ◽  
Author(s):  
En An Chi ◽  
Tie Jun Tao ◽  
Ming Sheng Zhao ◽  
Qiang Kang

Based on the discrete element numerical simulation, the change of failure modes of slope influenced by parameters of rock mass structural plane is studied. It is shown the failure modes shift gradually from the bedding sliding failure modes to the sliding-bending failure modes with the increase of the strength of the rock mass structural plane; The slope failure modes are mainly sliding failure modes with the increasing of the normal and shear stiffness and spacing of rock structural plane. Failure modes shift from shearing slip failure modes to shearing slip and buckling failure modes and finally to the tilting failure modes with the increase of the rock structural plane dip angle. The impact of the rock structural plane cohesion to the slope stability is the greatest, and the stiffness is the least.


2013 ◽  
Vol 438-439 ◽  
pp. 1232-1237
Author(s):  
Yu Feng Wei ◽  
De Xin Nei

Kala Hydropower Station is located in the midstream of Yalong River in Sichuan Province of China, and the type of dam is concrete gravity dam, with a largest dam height of 129 m, an installed capacity of 1000 MW and a storage capacity of 255.8 million cubic meters. The slope on the right bank of the dam site is mainly composed of hard metasandstone and marbles interbedded with carbonaceous slates and the dip of rock formation is the same as the aspect of slope, so that it is a typical bedding slope. The field survey indicates that the failure of bedding slope of hard rock is not on a common mode of slipping-bending or buckling, but on an uncommon failure mode. The paper introduces a research method that starts with geologic history, analyzes current state and predicts the future failure mode, analyzes the characteristics and phenomenon of slope failure, and adopts the finite element calculation method to analyze the plastic zone resulting from slope deformation. According to the deformation evidence and calculation results, the engineering geologic mechanical theory is used to analyze the deformation and failure mode of slope, and it is indicated that the current and future failure modes of hard rock slope with large thickness are all slipping-shear failure.


1989 ◽  
Vol 111 (4) ◽  
pp. 270-278
Author(s):  
B. A. Chappell

Stress distribution in a rock material containing cracks, without thickness, and joints, with thickness, is controlled by two basic principles, namely equilibrium and compatibility. Two deformation models representing these two basic requirements are used to construct the rock mass’ local composite moduli that are then combined to obtain the rock mass’ global moduli. Deformational modes in the form of compliances give upper and lower value moduli representing the constraints of compatibility and equilibrium, respectively. In a loaded rock mass there is no stress redistribution involved in the application of the equilibrium model, while for the compatibility model there are stress redistributions. For cracks, with no thickness, only the equilibrium model defines the deformation moduli, whereas for joints both the equilibrium and compatibility models are required because of the joint’s volume effects. Using both the joint’s shear strength and the Griffith’s crack initiation criteria, the Griffith’s strength loci for firm-hard and soft rock masses are produced. The strength loci representing normal and shear failure modes for the firm-hard rock mass are significantly different, whereas for the soft rock mass they are similar.


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Qing-Bo Li ◽  
Jun-Zhi Wang ◽  
Gui-Jun Wang ◽  
Qing-Liang Liu ◽  
Chang-Bin Yan

Abstract Lithology variations, which are recognized as rock type differences, significantly affect the physical properties of rock masses in red beds. In this paper, we introduce a statistical method for quantitatively evaluating the degree of lithology variations in layered red beds with depth. The core of this method is to use borehole logs as random variables for statistical analysis to calculate the percentage of a specified lithology at a given elevation, which involves seven steps of attitude calculation, reference point selection, distance calculation, elevation modification, data discretization, data statistics, and curve plotting. The Yellow River Guxian Dam is chosen as a field case study. We classify rock types of feldspar sandstone, fine sandstone, and conglomerate into hard rocks and that rock types of calcareous siltstone, argillaceous siltstone, and mudstone into soft rocks. Borehole logs recorded during the geological investigation are used to plot the percentage curve of hard rocks. We find that the degree of lithology variations for each lithology group differs greatly, the general behaviors of lithology variations on two sides of the Guxian Dam riverbed are quite similar but still with some differences, and that some thick lithology groups can be finely divided into several subgroups. On the basis of the hard rock percentage curve, we introduce a lithology variation index to quantitatively characterize the degree of lithology variations, which can be used as an important index to supplement the traditional methods when performing rock mass classifications in red beds. We also plot the trilithology percentage curve of sandstone, calcareous siltstone, and argillaceous siltstone, which serves for the determination of physical parameters of the dam foundation rock mass, the identification of the potential shear sliding surface, and the search for an impervious grouting bottom. Moreover, we find that the crest and trough, which are local high and low points in the hard rock percentage curve, can be used to show some characteristics of shear zones. The locations of shear zones are well represented in the form of troughs and that the development of shear zones has a good linear relationship with the hard rock percentage of the corresponding crest. The method proposed in this paper can be promoted and applied in similar projects or studies.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


2014 ◽  
Vol 14 (9) ◽  
pp. 2627-2635 ◽  
Author(s):  
Z. Feng ◽  
B. Li ◽  
Y. P. Yin ◽  
K. He

Abstract. Calcareous mountainous areas are highly prone to geohazards, and rockslides play an important role in cliff retreat. This study presents three examples of failures of limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China. Field observations and numerical modeling of Yudong Escarpment, Zengzi Cliff, and Wangxia Cliff showed that pre-existing vertical joints passing through thick limestone and the alternation of competent and incompetent layers are the most significant features for rockslides. A "hard-on-soft" cliff made of hard rocks superimposed on soft rocks is prone to rock slump, characterized by shearing through the underlying weak strata along a curved surface and backward tilting. When a slope contains weak interlayers rather than a soft basal, a rock collapse could occur from the compression fracture and tensile split of the rock mass near the interfaces. A rockslide might shear through a hard rock mass if no discontinuities are exposed in the cliff slope, and sliding may occur along a moderately inclined rupture plane. The "toe breakout" mechanism mainly depends on the strength characteristics of the rock mass.


Sign in / Sign up

Export Citation Format

Share Document