scholarly journals Integrative Assessment of Stormwater Infiltration Practices in Rapidly Urbanizing Cities: A Case of Lucknow City, India

Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 93
Author(s):  
Jheel Bastia ◽  
Binaya Kumar Mishra ◽  
Pankaj Kumar

The lack of strategic planning in stormwater management has made rapidly urbanizing cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned rapid urbanization. As with many other low to middle-income countries, India depends on its conventional and centralized stormwater drains for managing stormwater runoff. However, in the absence of a robust stormwater management policy governed by the state, its impact trickles down to a municipal level and the negative outcome can be clearly observed through a failure of the drainage systems. This study examines the role of onsite and decentralized stormwater infiltration facilities, as successfully adopted by some higher income countries, under physical and social variability in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of 48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized infiltration systems.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2369
Author(s):  
Zhou

As the urban environment keeps growing, stormwater management programs have been adopted to address unregulated nonpoint runoff and pollutants across the world. Extensive studies on stormwater runoff and quality at smaller spatial scales exist, but are rare at larger spatial scales. Using the City of Corvallis, Oregon, a small sized American city, as a test-bed, this study estimates urban stormwater runoff and quality by zoning, which specifies land uses, and by parcel, which defines land ownership using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and high resolution land use and land cover data. The correlations between stormwater runoff volume, stormwater quality, parcel land cover sizes, and values are then analyzed and visualized in RStudio. The results indicate that stormwater runoff and quality are determined by complex biophysical processes, with strong correlations between urban spatial sizes and property values for some land uses being observed. The research results provide suggestions for low impact development applications for different land uses, and the findings in this research can be used to suggest stormwater management policy for various land uses in small sized cities.


Author(s):  
Zongxue Xu ◽  
Gang Zhao

Abstract. China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flood risk. In the present study, the major purpose is to investigate the impact of land use/cover change on hydrological processes. The intensive human activities, such as the increase of impervious area, changes of river network morphology, construction of drainage system and water transfer, were considered in this study. Landsat TM images were adopted to monitor urbanization process based on Urban Land-use Index (ULI). The SWMM model considering different urbanized scenarios and anthropogenic disturbance was developed. The measured streamflow data was used for model calibration and validation. Precipitation with different return periods was taken as model input to analyse the changes of flood characteristics under different urbanized scenarios. The results indicated that SWMM provided a good estimation for storms under different urbanized scenarios. The volume of surface runoff after urbanization was 3.5 times greater than that before urbanization; the coefficient of runoff changed from 0.12 to 0.41, and the ratio of infiltration decreased from 88 to 60 %. After urbanization, the time of overland flow concentration increased while the time of river concentration decreased; the peak time did not show much difference in this study. It was found that the peak flow of 20-year return-period after urbanization is greater than that of 100-year return-period before urbanization. The amplification effect of urbanization on flood is significant, resulting in an increase of the flooding risk. These effects are especially noticeable for extreme precipitation. The results in this study will provide technical support for the planning and management of urban storm water and the evaluation on Low Impact Development (LID) measures.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 323-338 ◽  
Author(s):  
D E Simpson ◽  
P H Kemp

The methodology used to estimate annual imports of nitrogen, phosphorus and some heavy metals by atmospheric fallout, and the export by stormwater runoff from a 12 ha commercial land-use catchment is described. An automatic flow and rainfall monitoring system was used. Import and export rates of pollutants for successive years are compared and the contribution of atmospheric fallout to runoff loads is assessed. The relationships found by regression analysis between certain water quality parameters are presented, together with confidence levels. The Stormwater Management Model (SWMM) was tested using measured catchment parameters and simulated and observed hydrographs are compared. Predicted loadings for some pollutants are compared with measured values.


2021 ◽  
Vol 777 ◽  
pp. 145976
Author(s):  
Can Wang ◽  
Abolfazl Masoudi ◽  
Min Wang ◽  
Jia Yang ◽  
Zhijun Yu ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6152
Author(s):  
Eunyoung Kim ◽  
Jaeyong Choi ◽  
Wonkyong Song

Invasive alien species (IAS) not only displace nearby indigenous plants and lead to habitat simplification but also cause severe economic damage by invading arable lands. IAS invasion processes involve external forces such as species characteristics, IAS assemblage traits, environmental conditions, and inter-species interactions. In this study, we analyzed the invasion processes associated with the introduction and spread of Ageratina altissima, a representative invasive plant species in South Korea. We investigated 197 vegetation quadrats (2 × 20 m) in regions bordering 47 forests in southern Seoul and Gyeonggi-do, South Korea. A total of 23 environmental variables were considered, which encompassed vegetation, topography, land use, and landscape ecology indices. The model was divided into an edge and an interior model and analyzed using logistic regression and a decision tree (DT) model. The occurrence of Ageratina altissima was confirmed in 61 sites out of a total of 197. According to our analysis, Ageratina altissima easily invaded forest edges with low density. The likelihood of its occurrence increased with lower elevation and gentler slope. In contrast, the spread of Ageratina altissima in the forest interior, especially based on seed spread and permeability, was favored by a lower elevation and gentler slopes. The analysis of Ageratina altissima settlement processes in forest edges coupled with the DT model demonstrated that land characteristics, such as the proximity to urbanized areas and the number of shrub and tree species, play a pivotal role in IAS settlement. In the forest interior, Ageratina altissima did not occur in 68 of the 71 sites where the soil drainage was under 2.5%, and it was confirmed that the tree canopy area had a significant impact on forest spread. Based on these results, it can be assumed that Ageratina altissima has spread in South Korean forests in much the same way as other naturalized species. Therefore, vegetation management strategies for naturalized species should be developed in parallel with land use management policy in regions surrounding forest edges to successfully manage and control Ageratina altissima invasion.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 318
Author(s):  
B. G. J. S. Sonneveld ◽  
M. D. Houessou ◽  
G. J. M. van den Boom ◽  
A. Aoudji

In the context of rapid urbanization, poorer residents in cities across low- and middle-income countries increasingly experience food and nutrition deficiencies. The United Nations has highlighted urban agriculture (UA) as a viable solution to food insecurity, by empowering the urban poor to produce their own fresh foods and make some profit from surplus production. Despite its potential role in reducing poverty and food insecurity, there appears to be little political will to support urban agriculture. This is seen in unclear political mandates that are sustained by information gaps on selection criteria for UA sites. The research reported here addresses this issue in the form of a decision-making support tool that assesses the suitability of cadastral units and informal plots for allotment gardens in urban and peri-urban areas. The tool was developed and tested for three rapidly expanding cities in Benin, a low-income country in West Africa, based on an ordered logit model that relates a set of 300 expert assessments on site suitability to georeferenced information on biophysical and socio-economic characteristics. Soil, land use, groundwater depth, vicinity to market and women’s safety were significant factors in the assessment. Scaled up across all cadastral units and informal sites, the tool generated detailed baseline maps on site suitability and availability of areas. Its capacity to support policymakers in selecting appropriate sites comes to the fore by reporting changes in site suitability under scenarios of improved soil fertility and enhanced safety for women.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rui Zhu ◽  
Galen Newman

AbstractThere has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change’s probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.


Sign in / Sign up

Export Citation Format

Share Document