Stormwater Runoff and Pollutant Modeling in a Florida Drainage Basin

1996 ◽  
Vol 25 (4) ◽  
pp. 345-374
Author(s):  
Richard Z. Xue ◽  
Joyce Zhang
Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 93
Author(s):  
Jheel Bastia ◽  
Binaya Kumar Mishra ◽  
Pankaj Kumar

The lack of strategic planning in stormwater management has made rapidly urbanizing cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned rapid urbanization. As with many other low to middle-income countries, India depends on its conventional and centralized stormwater drains for managing stormwater runoff. However, in the absence of a robust stormwater management policy governed by the state, its impact trickles down to a municipal level and the negative outcome can be clearly observed through a failure of the drainage systems. This study examines the role of onsite and decentralized stormwater infiltration facilities, as successfully adopted by some higher income countries, under physical and social variability in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of 48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized infiltration systems.


Author(s):  
O. Mudroch ◽  
J. R. Kramer

Approximately 60,000 tons per day of waste from taconite mining, tailing, are added to the west arm of Lake Superior at Silver Bay. Tailings contain nearly the same amount of quartz and amphibole asbestos, cummingtonite and actinolite in fibrous form. Cummingtonite fibres from 0.01μm in length have been found in the water supply for Minnesota municipalities.The purpose of the research work was to develop a method for asbestos fibre counts and identification in water and apply it for the enumeration of fibres in water samples collected(a) at various stations in Lake Superior at two depth: lm and at the bottom.(b) from various rivers in Lake Superior Drainage Basin.


2020 ◽  
pp. 1-19
Author(s):  
Cinalberto Bertozzi ◽  
Fabio Paglione

The Burana Land-Reclamation Board is an interregional water board operating in three regions and five provinces. The Burana Land-Reclamation Board operates over a land area of about 250,000 hectares between the Rivers Secchia, Panaro and Samoggia, which forms the drainage basin of the River Panaroand part of the Burana-Po di Volano, from the Tuscan-Emilian Apennines to the River Po. Its main tasks are the conservation and safeguarding of the territory, with particular attention to water resources and how they are used, ensuring rainwater drainage from urban centres, avoiding flooding but ensuringwater supply for crop irrigation in the summer to combat drought. Since the last century the Burana Land-Reclamation Board has been using innovative techniques in the planning of water management schemes designed to achieve the above aims, improving the management of water resources while keeping a constant eye on protection of the environment.


2000 ◽  
Vol 49 (4) ◽  
pp. 215-238 ◽  
Author(s):  
Hanan Ginat ◽  
Yoav Avni ◽  
Zvi Garfunkel ◽  
Hanan Ginata ◽  
Yosef Bartov

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


2020 ◽  
Vol 42 (3) ◽  
pp. 293-303
Author(s):  
VALERIY BONDAREV

The theoretical and methodological basis of the systems hierarchical spatial and temporal analysis of a drainage basin, which addresses the problems of effective management in socio-natural systems of different ranks, is considered. It is proposed to distinguish 9 orders of forms that are relevant to the analysis of drainage basins, where the first level is represented by individual aggregates and particles, and the last - by basins of large and the largest rivers. As part of the allocation of geological, historical and modern time intervals, the specificity of the implementation of processes in basins of different scales from changing states, through functioning to evolution is demonstrated. The interrelation of conditions and factors that determine the processes occurring within the drainage basins is revealed. It is shown that a specific combination of conditions and factors that determine processes in the drainage basin is associated with the hierarchy of the objects under consideration, i.e. the choice of a spatial-temporal hierarchical level is crucial for the organization of study within drainage basins. At one hierarchical level, some phenomenon can be considered as a factor, and at another - as a condition. For example, tectonic processes can be considered as an active factor in the evolution of large river basins in the geological perspective, but for small drainage basin, this is already a conservative background condition. It is shown that at the historical time the anthropogenic factor often comes to the fore, with the appearance of which in the functioning of the drainage basin, there is a need to take into account the entire complex of socio-environmental problems that can affect the sustainable state of various territories, especially in the field of water and land use. Hierarchical levels of managing subjects are identified, which are primarily responsible for effective management at the appropriate hierarchical level of the organization of the socio-natural system within the catchment area, starting from an individual to humankind as a whole.


Sign in / Sign up

Export Citation Format

Share Document