scholarly journals A Novel Vision-Based Approach for the Classification of Volcanic Ash Granulometry

2021 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Bruno Andò ◽  
Salvatore Baglio ◽  
Vincenzo Marletta ◽  
Salvatore Castorina

Volcanic ash fall-out represents a serious hazard for air and road traffic. The forecasting models used to predict its time–space evolution require information about characteristic parameters such as the ash granulometry. Typically, such information is gained by spot direct observation of the ash at the ground or by using expensive instrumentation. A distributed Wireless Sensor Network (WSN) of low-cost monitoring stations would represent a suitable solution in performing continuous and high spatial resolution monitoring. In this paper, a novel low-cost vision-based methodology, together with a dedicated image processing algorithm aimed at the estimation and classification of the ash granulometry, is presented. The first prototype developed to investigate the methodology consists of a light-controlled tank and a camera. The acquired images of the ash samples are transmitted to a PC and processed by a dedicated paradigm developed in LabVIEW™. A threshold algorithm was developed to provide a classification of the detected ash. Optimal thresholds were estimated by using the theory of receiver operating characteristic (ROC) curves. The methodology was validated experimentally using real ash erupted from Mount Etna, with three different nominal granulometries: ɸ1 = 0.5 mm, ɸ2 = 1 mm, and ɸ3 = 2 mm. The preliminary results demonstrated the viability of the proposed approach, showing average accuracies in the estimation of the granulometry of 50 µm, suitable for the implementation of a low-cost distributed early warning solution. The main novelties of this work reside in both the low-cost vision-based methodology and the proposed classification algorithm.

2013 ◽  
Vol 8 ◽  
Author(s):  
Daniele Lombardo ◽  
Nicola Ciancio ◽  
Raffaele Campisi ◽  
Annalisa Di Maria ◽  
Laura Bivona ◽  
...  

Background: Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. Methods: We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. Results: We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. Conclusions: There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 322-329 ◽  
Author(s):  
Nuria Lopez-Ruiz ◽  
Fernando Granados-Ortega ◽  
Miguel Angel Carvajal ◽  
Antonio Martinez-Olmos

Purpose In this work, the authors aim to present a compact low-cost and portable spectral imaging system for general purposes. The developed system provides information that can be used for a fast in situ identification and classification of samples based on the analysis of captured images. The connectivity of the instrument allows a deeper analysis of the images in an external computer. Design/methodology/approach The wavelength selection of the system is carried out by light multiplexing through a light-emitting diode panel where eight wavelengths covering the spectrum from ultraviolet (UV) to near-infrared region (NIR) have been included. The image sensor used is a red green blue – infrared (RGB-IR) micro-camera controlled by a Raspberry Pi board where a basic image processing algorithm has been programmed. It allows the visualization in an integrated display of the reflectance and the histogram of the images at each wavelength, including UV and NIRs. Findings The prototype has been tested by analyzing several samples in a variety of applications such as detection of damaged, over-ripe and sprayed fruit, classification of different type of plastic materials and determination of properties of water. Originality/value The designed system presents some advantages as being non-expensive and portable in comparison to other multispectral imaging systems. The low-cost and size of the camera module connected to the Raspberry Pi provides a compact instrument for general purposes.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


2021 ◽  
Vol 14 (5) ◽  
pp. 440
Author(s):  
Eirini Siozou ◽  
Vasilios Sakkas ◽  
Nikolaos Kourkoumelis

A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2021 ◽  
pp. 108199
Author(s):  
Pau Arce ◽  
David Salvo ◽  
Gema Piñero ◽  
Alberto Gonzalez

Sign in / Sign up

Export Citation Format

Share Document