scholarly journals Electrocatalytical Chemical Sensor for Hydrogen Peroxide

2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Arwa Laroussi ◽  
Noureddine Raouafi ◽  
Vladimir Mirsky

The fast and selective determination of hydrogen peroxide (H2O2) is of importance not only because of strong interest in this widely applied analyte, but also because of the development of enzymatic biosensors for glucose or other metabolites where the sensor for H2O2 can be used as the transducer. Here, we report on an electrocatalytical amperometric sensor for the detection of H2O2. It is a sensor that consists of a gold electrode covered by a self-assembled monolayer (SAM) with immobilized p-benzoquinone. To provide highly stable immobilization of p-benzoquinone at the distance of effective electron tunneling, a new anchor compound—1,3-dimercaptopropan-2-ol—was synthesized and used for preparation of the SAM. Due to two thiol groups binding gold surface, this compound provides high stability of the SAM. The surface concentration of p-benzoquinone obtained from cyclic voltammetry is 2.5 ± 0.2 × 10−10 mol·cm−2. Cyclic voltammetry and chronoamperometry experiments proved that the immobilized benzoquinone exhibited high electrocatalytic activity towards the decomposition of H2O2. Depending on the used potential range, different sensing modes can be realized. For example, one can measure electrochemical response due to the oxidation of H2O2 at anodic potentials, or due to the reduction of oxygen formed during oxidative decomposition of H2O2. Also, amperometric response at fixed potential of +0.4 V vs. Ag/AgCl corresponding to the oxidation of benzoquinone to hydroquinone was studied. The sensor exhibited a linear response over a concentration range of 0.1–2 mM with a low detection limit of 4.24 µM. The reproducibility of three different electrodes prepared was examined at the H2O2 concentration range from 0.1 till 3 mM, which resulted in a relative standard deviation below 4.2%.

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
H. Baccar ◽  
T. Ktari ◽  
A. Abdelghani

We present a comparison between two biosensors for hydrogen peroxide (H2O2) detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP) enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.


2021 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Arwa Laroussi ◽  
Małgorzata Kot ◽  
Jan Ingo Flege ◽  
Noureddine Raouafi ◽  
Vladimir Mirsky

1,3-dimercaptopropan-2-ol, a symmetrical di-thiol, has been synthesized and applied as a new type of anchor molecule to prepare a self-assembled monolayer (SAM) on a gold surface. The formed monolayers were studied by cyclic voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, kinetic capacitance, and contact angle measurements. The SAM structure depends on the adsorption conditions. A short incubation time of the electrode at high concentration of this di-thiol leads to the predominating binding through one thiol group of the adsorbate to the gold surface, while a long incubation at low concentration leads to the predominating binding by both thiol groups. A comparative study of the desorption and replacement of SAMs indicates a strong stability increase when the SAM molecules bond gold surfaces by two bonds mainly. This monolayer was used to immobilize electrochemically active p-benzoquinone moiety. The surface concentration of p-benzoquinone obtained from cyclic voltammetry is 2.5 ± 0.2 × 10−10 mol cm−2, which corresponds to the functionalization of 65 ± 5% of SAM molecules. The obtained highly stable SAM with redox-active terminal group can be applied for different tasks of chemical sensing and biosensing. As an example, an application of this system for electrocatalytical oxidation of dihydronicotinamide adenosine dinucleotide (NADH) was tested.


1984 ◽  
Vol 49 (10) ◽  
pp. 2222-2230 ◽  
Author(s):  
Viliam Múčka ◽  
Rostislav Silber

The catalytic and physico-chemical properties of low-temperature nickel-silver catalysts with nickel oxide concentrations up to 43.8% (m/m) are examined via decomposition of hydrogen peroxide in aqueous solution. The mixed catalysts prepared at 250°C are composed of partly decomposed silver carbonate or oxide and nickel carbonate or hydroxide decomposed to a low degree only and exhibiting a very defective crystal structure. The activity of these catalysts is determined by the surface concentration of silver ions, which is affected by the nickel component present. The latter also contributes to the thermal stability of the catalytic centres of the silver component, viz. the Ag+ ions. The concentration of these ions varies with the temperature of the catalyst treatment, the activity varies qualitatively in the same manner, and the system approaches the Ag-NiO composition. The catalytic centres are very susceptible to poisoning by chloride ions. A previous exposition of the catalyst to a gamma dose of 10 kGy from a 60Co source has no measurable effect on the physico-chemical properties of the system.


2002 ◽  
Vol 413 (1-2) ◽  
pp. 218-223 ◽  
Author(s):  
Hellas C.M Yau ◽  
Hing Leung Chan ◽  
Sen-fang Sui ◽  
Mengsu Yang

2009 ◽  
Vol 610-613 ◽  
pp. 161-164
Author(s):  
Li Li Liang ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

A ferric stearate electrode was made by doctor-blade methods using the Fluorine tin oxide (FTO) conductive glass. The electrochemical behavior of ferric stearate electrode was studied by the cyclic voltammetry. The electro-catalytic effects of ferric stearate on H2O2 were also investigated by cyclic voltammetry.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Huan ◽  
Li Tang ◽  
Dongmei Deng ◽  
Huan Wang ◽  
Xiaojing Si ◽  
...  

Background: Hydrogen peroxide (H2O2) is a common reagent in the production and living, but excessive H2O2 may enhance the danger to the human body. Consequently, it is very important to develop economical, fast and accurate techniques for detecting H2O2. Methods: A simple two-step electrodeposition process was applied to synthesize Pd-Cu/Cu2O nanocomposite for non-enzymatic H2O2 sensor. Cu/Cu2O nanomaterial was firstly electrodeposited on FTO by potential oscillation technique, and then Pd nanoparticles were electrodeposited on Cu/Cu2O nanomaterial by cyclic voltammetry. The chemical structure, component, and morphology of the synthesized Pd-Cu/Cu2O nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of Pd-Cu/Cu2O nanocomposite were studied by cyclic voltammetry and amperometry. Results: Under optimal conditions, the as-fabricated sensor displayed a broad linear range (5-4000 µM) and low detection limit (1.8 µM) for the determination of H2O2. The proposed sensor showed good selectivity and reproducibility. Meanwhile, the proposed sensor has been successfully applied to detect H2O2 in milk. Conclusion: The Pd-Cu/Cu2O/FTO biosensor exhibits excellent electrochemical activity for H2O2 reduction, which has great potential application in the field of food safety.


2001 ◽  
Vol 66 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Aleksandra Buzarovska ◽  
Irena Arsova ◽  
Ljubomir Arsov

Poly(2-methyl aniline) or poly(ortho-toluidine), as ring substituted derivative of aniline, has been synthesized electrochemically in various concentrations of H2SO4 and HCl, and then characterized by cyclic voltammetry, as well as by impedance and Raman spectroscopy. The cyclic voltammograms of poly(o-toluidine) and poly(aniline) show that the electrochemical polymerization of these two polymers proceeds by almost identical mechanisms. The Raman spectroscopical measurements suggest that the redox reactions of poly(aniline) and poly(o-toluidine) are similar in the potential range between -0.2 and 0.7V vs. SCE. The impedance measurements showed that the conductivity of poly(o-toluidine) is an order of magnitude lower than that of the corresponding poly(aniline) form.


1996 ◽  
Vol 240 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Kensuke Arai ◽  
Fumiyo Kusu ◽  
Naohito Noguchi ◽  
Kiyoko Takamura ◽  
Hisao Osawa

1991 ◽  
Vol 74 (1) ◽  
pp. 22-26 ◽  
Author(s):  
David K Christians ◽  
Thomas G Aspelund ◽  
Scott V Brayton ◽  
Larry L Roberts

Abstract Seven laboratories participated In a collaborative study of a method for determination of phosphorus in meat and meat products. Samples are digested In sulfuric acid and hydrogen peroxide; digestion Is complete In approximately 10 mln. Phosphorus Is determined by colorimetric analysis of a dilute aliquot of the sample digest. The collaborators analyzed 3 sets of blind duplicate samples from each of 6 classes of meat (U.S. Department of Agriculture classifications): smoked ham, water-added ham, canned ham, pork sausage, cooked sausage, and hamburger. The calibration curve was linear over the range of standard solutions prepared (phosphorus levels from 0.05 to 1.00%); levels in the collaborative study samples ranged from 0.10 to 0.30%. Standard deviations for repeatability (sr) and reproducibility (sR) ranged from 0.004 to 0.012 and 0.007 to 0.014, respectively. Corresponding relative standard deviations (RSDr and RSDR, respectively) ranged from 1.70 to 7.28% and 3.50 to 9.87%. Six laboratories analyzed samples by both the proposed method and AOAC method 24.016 (14th Ed.). One laboratory reported results by the proposed method only. Statistical evaluations Indicated no significant difference between the 2 methods. The method has been adopted official first action by AOAC.


Sign in / Sign up

Export Citation Format

Share Document