scholarly journals Development of Control Circuit for Inductive Levitation Micro-Actuators

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 39
Author(s):  
Vitor Vlnieska ◽  
Achim Voigt ◽  
Sagar Wadhwa ◽  
Jan Korvink ◽  
Manfred Kohl ◽  
...  

A control circuit for inductive levitation micro-actuators was developed in this research, the circuit’s performance and its electrical parameters are discussed. The developed control circuit was fabricated on a four-layer printed circuit board (PCB) board with a size of 60 × 60 × 25 mm. It consisted of a generator based on high-speed Flip-Flop components and a current amplifier build on a H-bridge configuration. The circuit was able to generate an AC current with a squared waveform in a frequency range from 8 to 43 MHz and with a peak-to-peak amplitude of up to 420 mA. To demonstrate the efficiency of developed circuit and its compatibility with a micro-actuation system, an inductive levitation micro-actuator was fabricated by using 3D micro-coil technology. The device was composed of two solenoidal coil designs, a levitation and a stabilization coil, with outer diameters of 2 and 3.8 mm, respectively. A 25 μm diameter gold wire was used to fabricate the coils, with the levitation coil having 20 turns and the stabilization coil having 12 turns, similar to the micro-structure presented previously by our group. Using the developed control circuit, the micro-actuator was successfully excited and it demonstrated the actuation of aluminum disc-shaped micro-objects with diameters of 2.8 and 3.2 mm and, for the first time, an aluminum square-shaped object with a side length of 2.8 mm at a frequency of 10 MHz. To characterize the actuation, the levitation height and the current amplitude were measured. In particular, we demonstrated that the square-shaped micro-object could be lifted up to a height of 84 μm with a current of 160 mA. The characterization was supported by a simulation using a 3D model based on the quasi-finite element model (FEM) approach.

2014 ◽  
Vol 592-594 ◽  
pp. 2117-2121 ◽  
Author(s):  
P. Veeramuthuvel ◽  
S. Jayaraman ◽  
Shankar Krishnapillai ◽  
M. Annadurai ◽  
A.K. Sharma

The electronics package in a spacecraft is subjected to a variety of dynamic loads during launch phase and suitable thermal environment for the mission life. The dynamic and thermal analyses performed for a structurally reconfigured electronics package. Two different simulation models are developed to carry out the analyses. This paper discusses in two parts, in part-1, the vibration responses are determined at various critical locations, including on the Printed Circuit Board (PCB) for the vibration loads specified by launch vehicle using Finite Element Analysis (FEA). The mechanical properties of PCB are determined from the test specimens, which are then incorporated in the finite element model. In part-2, the steady-state temperature distributions on the components and on the PCB are determined, to check the effectiveness of heat transfer path from the components to the base of the package and to verify the predicted values are within the acceptable temperature limits specified. The predicted temperature values are then compared with on-orbit observations.


2013 ◽  
Vol 333-335 ◽  
pp. 465-471
Author(s):  
Chuan Liu ◽  
Zhi Chao Huang ◽  
Peng Wu ◽  
Lei Chen ◽  
Wei Wang

Many applications in Power communication system have a demand of adjustable transmission time delay of high-speed signal. In sequential logic circuit, the control of transmission time delay of high-speed signal can effectively improve the accuracy of clock sampling, as a result, satisfy the constraints between clock signal and periodic data. A method of equivalent sampling based on printed circuit board (PCB) is provided in the article, it realizes equivalent sampling of the data by fixing a group of clock signal delay, thus, increase the accuracy of sampling.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000195-000199
Author(s):  
J. Roberts ◽  
A. Mizan ◽  
L. Yushyna

GaN transistors intended for use at 600–900 V and that are capable of providing of 30–100 A are being introduced this year. These devices have a substantially better switching Figure-of-Merit (FOM) than silicon power switches. Rapid market acceptance is expected leading to compound annual growth rates of 85 %. However these devices present new packaging challenges. Their high speed combined with the very high current being switched demands that very low inductance packaging must be combined with highly controlled drive circuitry. While convention, and the usually vertical power device die structure, has largely determined power transistor package formats in the past, the lateral nature of the today GaN devices requires the use of new package types. The new packages have to operate at high temperatures while providing effective heat removal, low inductance, and low series resistance. Because GaN devices are lateral they require the package metal tracks to be integrated within the on-chip tracks to carry the current away from the thin on-chip metal tracks. The new GaN devices are available in two formats: one for use in embedded modular assemblies and the other for use mounted upon conventional circuit board systems. The package intended for discrete printed circuit board (PCB) assemblies has a top side cooling option that simplifies the thermal interface to the heat sink. The paper describes the die layout including the added copper tracks. The corresponding package elements that interface directly with the surface of the die play a vital role in terms of the current handling. They also provide the interface to the external busbars that allow the package to be mounted within, or on PCB. The assembly has been subject to extensive thermal analysis and the performance of a 30 A, 650 V transistor is described.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000355-000360
Author(s):  
K. Macurova ◽  
R. Bermejo ◽  
M. Pletz ◽  
R. Schöngrundner ◽  
T. Antretter ◽  
...  

Important topics for electronic packages are thermally induced stresses created during package manufacturing and their role in mechanical failure. In the present paper, an analytical and a numerical analysis of the assembly process (component attached with an adhesive to a copper foil) is investigated. This process is prior to the lamination of the printed circuit board. Stresses develop due to a mismatch of coefficients of thermal expansion and particularly to shrinkage associated with adhesive polymerization. The analytical investigation is based on the classical laminate theory and an interfacial model. The three-dimensional numerical finite element model is capable to use geometric and material properties which are not possible to investigate analytically. In particular, the influence of the adhesive meniscus and plastic material models for copper and adhesive are investigated. The models are validated experimentally by an X-ray diffraction method (Rocking-Curve-Technique) showing a good agreement of the calculated and measured curvature radius values.


2015 ◽  
Vol 12 (2) ◽  
pp. 80-85 ◽  
Author(s):  
K. Macurova ◽  
R. Bermejo ◽  
M. Pletz ◽  
R. Schöngrundner ◽  
T. Antretter ◽  
...  

Important topics for electronic packages are thermally induced stresses created during package manufacturing and their role in mechanical failure. In the present paper, an analytical and a numerical analysis of the assembly process (component attached with an adhesive to a copper foil) is investigated. This process is prior to the lamination of the printed circuit board. Stresses develop due to a mismatch of coefficients of thermal expansion and particularly to shrinkage associated with adhesive polymerization. The analytical investigation is based on the classical laminate theory and an interfacial model. The three-dimensional, numerical, finite element model is capable of using geometric and material properties not possible to investigate analytically. In particular, the influence of the adhesive meniscus and plastic material models for copper and adhesive are investigated. The models are validated experimentally by an x-ray diffraction method (rocking-curve technique) showing a good agreement of the calculated and measured curvature radius values.


2019 ◽  
Vol 13 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Neethu Salim ◽  
Saurabh Prakash Nikam ◽  
Saumitra Pal ◽  
Ashok Krishnrao Wankhede ◽  
Baylon Godfrey Fernandes

Sign in / Sign up

Export Citation Format

Share Document