scholarly journals Co-Design and Control of a Magnetic Microactuator for Freely Moving Platforms

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 23
Author(s):  
Michael Olbrich ◽  
Arwed Schütz ◽  
Koustav Kanjilal ◽  
Tamara Bechtold ◽  
Ulrike Wallrabe ◽  
...  

A current goal for microactuators is to extend their usually small working ranges, which typically result from mechanical connections and restoring forces imposed by cantilevers. In order to overcome this, we present a bistable levitation setup to realise free vertical motion of a magnetic proof mass. By superimposing permanent magnetic fields, we imprint two equilibrium positions, namely on the ground plate and levitating at a predefined height. Energy-efficient switching between both resting positions is achieved by the cooperation of a piezoelectric stack actuator, initially accelerating the proof mass, and subsequent electromagnetic control. A trade-off between robust equilibrium positions and energy-efficient transitions is found by simultaneously optimising the controller and design parameters in a co-design. A flatness-based controller is then proposed for tracking the obtained trajectories. Simulation results demonstrate the effectiveness of the combined optimisation.

2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


2016 ◽  
Vol 21 (2) ◽  
pp. 1080-1091 ◽  
Author(s):  
Wesley Roozing ◽  
Zhibin Li ◽  
Gustavo A. Medrano-Cerda ◽  
Darwin G. Caldwell ◽  
Nikos G. Tsagarakis
Keyword(s):  

Author(s):  
Karl Uebel ◽  
Henrique Raduenz ◽  
Petter Krus ◽  
Victor Juliano de Negri

This paper deals with design optimisation of hydraulic hybrid drivelines during early concept design phases. To set the design parameters of a hybrid driveline such as gear ratios, pump/motor displacements and size of energy storage, the energy management of the hybrid machine needs to be considered as well. This is problematic since a nested design and control optimisation normally requires substantial computer power and is time-consuming. Few previous studies have treated combined design and control optimisation of hydraulic hybrid vehicles using detailed, non-linear component driveline models. Furthermore, previously proposed design optimisation methods for on-road vehicles are not suitable for heavy off-road machines operating in short repetitive cycles with high transient power output. The paper demonstrates and compares different optimisation approaches for design and control optimisation combining deterministic dynamic programming and non-gradient based numerical optimisation. The results show that a simple rule-based energy management strategy can be sufficient to find the optimal hardware design even though non-optimal control laws are used.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Mirosław Targosz ◽  
Wojciech Skarka ◽  
Piotr Przystałka

The article presents a method for optimizing driving strategies aimed at minimizing energy consumption while driving. The method was developed for the needs of an electric powered racing vehicle built for the purposes of the Shell Eco-marathon (SEM), the most famous and largest race of energy efficient vehicles. Model-based optimization was used to determine the driving strategy. The numerical model was elaborated in Simulink environment, which includes both the electric vehicle model and the environment, i.e., the race track as well as the vehicle environment and the atmospheric conditions. The vehicle model itself includes vehicle dynamic model, numerical model describing issues concerning resistance of rolling tire, resistance of the propulsion system, aerodynamic phenomena, model of the electric motor, and control system. For the purpose of identifying design and functional features of individual subassemblies and components, numerical and stand tests were carried out. The model itself was tested on the research tracks to tune the model and determine the calculation parameters. The evolutionary algorithms, which are available in the MATLAB Global Optimization Toolbox, were used for optimization. In the race conditions, the model was verified during SEM races in Rotterdam where the race vehicle scored the result consistent with the results of simulation calculations. In the following years, the experience gathered by the team gave us the vice Championship in the SEM 2016 in London.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Miguel Díaz-Cacho Medina ◽  
Emma Delgado Romero ◽  
Antonio Barreiro Blas

Network and control relationship is an essential aspect in the design of networked control systems (NCSs). The design parameters are mainly centered in the transmission rate and in the packet structure, and some studies have been made to determine how transmission rate affects the network delay and consequently the stability of the control. In Internet, these analysis are mathematically complex due to the large number of different potential scenarios. Using empirical methods, this work deduces that the transmission scheduling problem of an NCS can be solved by designing an appropriate transport protocol, taken into account high and periodic sampling rates. The transport protocol features are determined by simulation, using a new test platform based on the NS2 network simulation suite, to develop control/network codesign solutions. Conclusions of this paper are that the transport features are packet-loss-based flow control, best effort, and fairness, supplemented by a packet priority scheme.


Author(s):  
Chenggang Yuan ◽  
Min Pan ◽  
Andrew Plummer

Digital hydraulics is a new technology providing an alternative to conventional proportional or servovalve-controlled systems in the area of fluid power. Research is driven by the need for highly energy efficient hydraulic machines but is relatively immature compared to other energy-saving technologies. Digital hydraulic applications, such as digital pumps, digital valves and actuators, switched inertance hydraulic converters (SIHCs) and digital hydraulic power management systems, all promise high energy efficiency. This review introduces the development of SIHCs and evaluates the device configurations, performance and control strategies that are found in current SIHC research, particularly focusing on the work being undertaken in last 15 years. The designs for highspeed switching valves are evaluated, and their advantages and limitations are discussed. This article concludes with some suggestions for the future development of SIHCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Agrim Gupta ◽  
Silvio Savarese ◽  
Surya Ganguli ◽  
Li Fei-Fei

AbstractThe intertwined processes of learning and evolution in complex environmental niches have resulted in a remarkable diversity of morphological forms. Moreover, many aspects of animal intelligence are deeply embodied in these evolved morphologies. However, the principles governing relations between environmental complexity, evolved morphology, and the learnability of intelligent control, remain elusive, because performing large-scale in silico experiments on evolution and learning is challenging. Here, we introduce Deep Evolutionary Reinforcement Learning (DERL): a computational framework which can evolve diverse agent morphologies to learn challenging locomotion and manipulation tasks in complex environments. Leveraging DERL we demonstrate several relations between environmental complexity, morphological intelligence and the learnability of control. First, environmental complexity fosters the evolution of morphological intelligence as quantified by the ability of a morphology to facilitate the learning of novel tasks. Second, we demonstrate a morphological Baldwin effect i.e., in our simulations evolution rapidly selects morphologies that learn faster, thereby enabling behaviors learned late in the lifetime of early ancestors to be expressed early in the descendants lifetime. Third, we suggest a mechanistic basis for the above relationships through the evolution of morphologies that are more physically stable and energy efficient, and can therefore facilitate learning and control.


Sign in / Sign up

Export Citation Format

Share Document