scholarly journals Efficient Removal of Diclofenac from Aqueous Solution by Potassium Ferrate-Activated Porous Graphitic Biochar: Ambient Condition Influences and Adsorption Mechanism

Author(s):  
Nguyen Thi Minh Tam ◽  
Yunguo Liu ◽  
Hassan Bashir ◽  
Zhihong Yin ◽  
Yuan He ◽  
...  

Porous graphitic biochar was synthesized by one-step treatment biomass using potassium ferrate (K2FeO4) as activator for both carbonization and graphitization processes. The modified biochar (Fe@BC) was applied for the removal of diclofenac sodium (DCF) in an aqueous solution. The as-prepared material possesses a well-developed micro/mesoporous and graphitic structure, which can strengthen its adsorption capacity towards DCF. The experimental results indicated that the maximum adsorption capacity (qmax) of Fe@BC for DCF obtained from Langmuir isotherm simulation was 123.45 mg·L−1 and it was a remarkable value of DCF adsorption in comparison with that of other biomass-based adsorbents previously reported. Thermodynamic quality and effect of ionic strength studies demonstrated that the adsorption was a endothermic process, and higher environmental temperatures may be more favorable for the uptake of DCF onto Fe@BC surface; however, the presence of NaCl in the solution slightly obstructed DCF adsorption. Adsorption capacity was found to be decreased with the increase of solution pH. Additionally, the possible mechanism of the DCF adsorption process on Fe@BC may involve chemical adsorption with the presence of H-bonding and π–π interaction. With high adsorption capacity and reusability, Fe@BC was found to be a promising absorbent for DCF removal from water as well as for water purification applications.

2018 ◽  
Vol 77 (5) ◽  
pp. 1303-1312 ◽  
Author(s):  
Jiangang Yu ◽  
Xingwen Zhang ◽  
Dong Wang ◽  
Ping Li

Abstract In this work, the biochar adsorbent carboxymethyl cellulose (CMC), was prepared from the pyrolysis (600 °C, 120 min) of chicken manure for the removal of methyl orange (MO) from aqueous solution, and its physicochemical properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The experimental parameters including agitation speed, initial solution pH, biochar dosage and contact time on the adsorption properties of MO from aqueous solution onto CMC were investigated in batch experiments. The kinetic adsorption of different initial concentration could be accurately described by the pseudo-second-order model and the overall rate process was apparently influenced by external mass transfer and intra-particle diffusion. Furthermore, the Langmuir isotherm model showed a better fit with equilibrium data (R2 > 0.99), with the maximum adsorption capacity of 39.47 mg·g−1 at 25 °C. Moreover, the thermodynamic parameters indicated that the adsorption of MO onto CMC was a spontaneous and endothermic process. The results of this study indicated that CMC could be used as a promising biomass adsorbent material for aqueous solutions containing MO.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 743-761 ◽  
Author(s):  
Jin Lin ◽  
Yan Wu ◽  
Afshin Khayambashi ◽  
Xiaolong Wang ◽  
Yuezhou Wei

The silica-based CeO2 adsorbent (CeO2/SiO2) was prepared for removing fluoride from the aqueous solution. The synthesized adsorbent was characterized by scanning electron microscope, energy dispersive spectrum, X-ray diffractometer, Fourier transform infrared spectrometer, and zeta potential measurement analyses. The adsorption batch experiments in the various experimental conditions including solution pH, contact time, initial fluoride concentration, and adsorption temperature were performed and investigated. The maximum adsorption capacity of fluoride into CeO2/SiO2 was 2.441 mmol/g at pH 3 and 298 K. The adsorption kinetics and isotherms were well described by the pseudo-second-order model and the Langmuir model, respectively. The fluoride adsorption reached the equilibrium in 15 min from the aqueous solution with the initial fluoride concentration of 400 mg/l at 298 K. In the temperature range of 298–338 K, the maximum adsorption capacity of fluoride decreased from 2.441 mmol/g to 2.109 mmol/l at pH 3. The adsorption thermodynamics study revealed that this process was a spontaneous, exothermic, and entropy-driving adsorption. Furthermore, the mechanism of adsorption was identified as the anion exchange and the electrostatic interaction. The desorption efficiency of fluoride-loaded CeO2/SiO2 adsorbent could reach about 95% by 0.1 mol/l NaOH.


2013 ◽  
Vol 69 (6) ◽  
pp. 1234-1240 ◽  
Author(s):  
O. Paşka ◽  
R. Ianoş ◽  
C. Păcurariu ◽  
A. Brădeanu

A magnetic iron oxide nanopowder (MnP), prepared by a simple and efficient combustion synthesis technique, was tested for the removal of the anionic dye Congo Red (CR) from aqueous solution. The influence of solution pH, adsorbent dose, temperature, contact time and initial dye concentration on the adsorption of CR onto MnP were investigated. It was shown that the CR adsorption was pH dependent and the adsorption mechanism was governed by electrostatic forces. The adsorption kinetic was best described by the pseudo-second-order model and the equilibrium data were well fitted to the Langmuir isotherm, yielding maximum adsorption capacity of 54.46 mg g−1. The undeniable advantages of the MnP adsorbent such as inexpensive preparation method, good adsorption capacity and easy separation using an external magnetic field, recommend it as a promising candidate for the removal of anionic dyes from polluted water.


Author(s):  
Doan Van Dat ◽  
Nguyen Hoai Thuong ◽  
Tran Thi Kieu Ngan ◽  
Le Thi Thanh Nhi ◽  
Dao My Uyen ◽  
...  

In this study, magnetic carboxylate-rich carbon material (Fe3O4@CRC) was synthesized via a low-temperature carbonization method and applied as an adsorbent for adsorption of Ni(II) ions and methylene blue (MB) in aqueous solution. The synthesized Fe3O4@CRC was characterized by various techniques (XRD, FTIR, FE-SEM, TEM, EDX, VSM, and BET). The adsorption kinetics, isotherms, thermodynamics, and the effects of key adsorption factors, including the pH value, initial adsorbate concentration, contact time, adsorbent dose and temperature were investigated in detail. The results showed that Fe3O4@CRC exhibited a high adsorption capacity for MB and Ni(II) with the maximum adsorption capacity of 187.26 mg/g and 106.75 mg/g, respectively. The adsorption of MB and Ni(II) on Fe3O4@CRC was a spontaneous and endothermic process, and was best described with the first-order kinetic model, Freundlich (for MB) and Langmuir (for Ni(II)) isotherm models. In addition, Fe3O4@CRC could maintain a high adsorption capacity after many consecutive cycles. Therefore, the Fe3O4@CRC material can be used as a highly efficient adsorbent for the removal of heavy metals and dyes from wastewater due to the advantages of high adsorption performance, easy separation, and good reusability.  


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050047
Author(s):  
Yanhong Wang ◽  
Xiuli Wang ◽  
Cuihong Wu ◽  
Xiaomei Wang ◽  
Xu Zhang

A hybrid adsorbent with inverse opal (IO) structure was prepared for removing Cd(II) from aqueous solution. The functional polymeric chains were grafted from the pore wall of IO silica to prepare the porous hybrid material by surface-initiated atom-transfer radical polymerization. Furthermore, the amidation reaction was carried out to obtain diethylenetriamine-modified hybrid adsorbent (IO SiO2-g-PAA-DETA). Batch adsorption of removing Cd(II) onto IO SiO2-g-PAA-DETA was studied as the effect of solution pH, adsorbent doses, contact time, ionic concentration, and temperature. When the grafted amount was 73%, the maximum adsorption capacity was obtained. The optimum adsorbent dose and pH value for adsorbing Cd(II) were found to be 5[Formula: see text]g/L and 0.5[Formula: see text]g/L, respectively. The adsorption capacity was almost unaffected by Na[Formula: see text] at low concentrations. The adsorption data was depicted by the corresponding models and the results displayed that adsorbing Cd(II) on IO SiO2-g-PAA-DETA followed the Freundlich and pseudo-first-order model. In addition, after six adsorption–desorption cycles, IO adsorbent could remain above 80% of the first adsorption ability while it was washed using 0.025[Formula: see text]M EDTA.


2013 ◽  
Vol 295-298 ◽  
pp. 1321-1326 ◽  
Author(s):  
Kun Wu ◽  
Ting Liu ◽  
Jun Ming Peng

This study investigates the adsorption characteristics of As(V) onto the Fe-based backwashing sludge (FBBS), which was produced in the Fe(II) removal process. FBBS exhibits rough surfaces and shows high BET surface area of 148.41 m2/g. According to the results of EDS and XRD, the main constituents include sulfate inter-layered Fe hydroxide [Fe(SO4)OH], ferric oxhydroxide (γ-FeOOH), quartz (SiO2), and calcium carbonate (CaCO3). The adsorption kinetics data were well described by the Elovich model (r2 = 0.993), indicating the highly heterogeneous adsorption. The maximum adsorption capacity of As(V) increased from 40.04 to 88.76 mg/g as temperatures increased from 298 to 318 K, suggesting an endothermic process. The removal of As(V) was inhibited with elevated solution pH, especially from pH 7.0 to pH 10.0. Moreover, the removal of As(V) was enhanced with an increase in ion strength (0.01-1 M NaNO3), implying that the adsorption of As(V) was mainly through inner-sphere complexes mechanism.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 193-205
Author(s):  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Taile Leswifi ◽  
Maurice S. Onyango

The presence of toxic metals in surface and natural waters, even at trace levels, poses a great danger to humans and the ecosystem. Although the combination of adsorption and coagulation techniques has the potential to eradicate this problem, the use of inappropriate media remains a major drawback. This study reports on the application of NaNO2/NaHCO3 modified sawdust-based cellulose nanocrystals (MCNC) as both coagulant and adsorbent for the removal of Cu, Fe and Pb from aqueous solution. The surface modified coagulants, prepared by electrostatic interactions, were characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS). The amount of coagulated/adsorbed trace metals was then analysed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). SEM analysis revealed the patchy and distributed floccules on Fe-flocs, which was an indication of multiple mechanisms responsible for Fe removal onto MCNC. A shift in the peak position attributed to C2H192N64O16 from 2θ = 30 to 24.5° occurred in the XRD pattern of both Pb- and Cu-flocs. Different process variables, including initial metal ions concentration (10–200 mg/L), solution pH (2–10), and temperature (25–45 °C) were studied in order to investigate how they affect the reaction process. Both Cu and Pb adsorption followed the Langmuir isotherm with a maximum adsorption capacity of 111.1 and 2.82 mg/g, respectively, whereas the adsorption of Fe was suggestive of a multilayer adsorption process; however, Fe Langmuir maximum adsorption capacity was found to be 81.96 mg/g. The sequence of trace metals removal followed the order: Cu > Fe > Pb. The utilization of this product in different water matrices is an effective way to establish their robustness.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3718
Author(s):  
Mohammad Azam ◽  
Saikh Mohammad Wabaidur ◽  
Mohammad Rizwan Khan ◽  
Saud I. Al-Resayes ◽  
Mohammad Shahidul Islam

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


Author(s):  
Lorena Alcaraz ◽  
María Esther Escudero ◽  
Francisco J. Alguacil ◽  
Irene Llorente ◽  
Ana Urbieta ◽  
...  

This paper describes the physico-chemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. KOH activated carbon is a microporous material with a specific BET surface area of 2330 m2·g-1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g-1. A significant dependence of the adsorption capacity on the solution pH was found, while it does not depend significantly neither on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g-1 and 33.52 mg·g-1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better fit to a Langmuir model and a pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous and favorable process.


Sign in / Sign up

Export Citation Format

Share Document