scholarly journals Coriandrum Sativum seeds as a green low-cost biosorbent for methylene blue dye removal from aqueous solution: spectroscopic, kinetic and thermodynamic studies

2018 ◽  
Vol 7 (3) ◽  
pp. 204-216
Author(s):  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
El Housseine Rifi ◽  
Ahmed Lebkiri

Coriandrum sativum seeds (CSS) were investigated as a new eco-friendly and economic biosorbent for the removal of methylene blue (MB) dye from synthetic solutions. First, the spectroscopic analyses were effectuated using FTIR and SEM to confirm the possibility of CSS to remove MB dye from aqueous solutions. The study of the influence of different parameters, such as contact time, CSS mass, solution pH, MB concentration, and temperature was realized and proved the rapid and efficient power adopted by CSS as a removal of the studied dye. Also, the regeneration study was effectuated for four cycles with excellent adsorption rates. The modeling studies revealed that the studied process obeys the pseudo-second-order model and Langmuir isotherm model. The adsorption amount was found to be 107.53 mg/g. Finally, the determination of thermodynamic parameters indicated the exothermic and spontaneous type of the removal process of MB onto CSS.


2021 ◽  
Vol 12 (6) ◽  
pp. 7845-7862

Water contamination caused by the presence of synthetic dye is one of the world's major environmental concerns. This work aims to explore the potential application of non-carbonized phosphoric acid-treated Balanites aegyptiaca "heglig" seed husks powder (BASHP) as a bio-sorbent for methylene blue (MB) removal from water bodies. BASHP was characterized using Fourier transform infrared spectroscopy (FTIR). The characteristics of BASHP, such as the iodine number, point of zero charges, solubility, and specific surface area (SMB) were also estimated. The biosorption of MB onto the BASHP surface was studied in batch mode under various conditions (contact time, shaking speed, solution temperature, initial solution pH, ionic strength, initial dye concentration, and biosorbent dosage). The adsorption kinetics and isotherm were better described by pseudo-second-order and Langmuir models, respectively. More than 97% of MB was removed, and the maximum biosorbed amount of MB (qmax) was 72.99 mg/g. Thermodynamics findings revealed that the proposed biosorption is an endothermic and spontaneous process. These findings showed that BASHP is a potentially eco-friendly, easily available, and low-cost material for removing hazardous dyes (e.g., methylene blue) from an aquatic environment, as well as a promising method for reducing agricultural solid waste (e.g., seed husks).



2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Chin Chiek Ee ◽  
Nor Aida Yusoff

Dyes contain carcinogenic materials which can cause serious hazards to aquatic life and the users of water. Textile industry is the main source of dye wastewater which results in environmental pollution. Many studies have been conducted to investigate the use of low cost adsorbent as an alternative technique for the adsorption of dye. The objective of this study is to determine the potential of eggshell powder as an adsorbent for methylene blue removal and find out the best operating conditions for the color adsorption at laboratory scale. The adsorption of cationic methylene blue from aqueous solution onto the eggshell powder was carried out by varying the operating parameters which were contact time, pH, dosage of eggshell powder and temperature in order to study their effect in adsorption capacity of eggshell powder. The results obtained showed that the best operating condition for removal of methylene blue was at pH 10 (78.98 %) and temperature 50°C (47.37 %) by using 2 g of eggshell powder (57.03 %) with 30 minutes equilibrium time (41.36 %). The kinetic studies indicated that pseudo-second-order model best described the adsorption process.



Author(s):  
Juraj Michálek ◽  
Kseniya Domnina ◽  
Veronika Kvorková ◽  
Kristína Šefčovičová ◽  
Klaudia Mončeková ◽  
...  

Abstract The usage of the low-cost catalysts for methylene blue removal from wastewater was investigated. Heterogeneous Fenton-like process consists of the use of a hydrogen peroxide solution, and an iron-rich catalyst, red mud and black nickel mud were used for that purpose. The factors such as the catalyst dose and the hydrogen peroxide solution volume were monitored. The results of experiments showed that the degradation of methylene blue dye in Fenton-like oxidation process using selected catalysts can be described by a pseudo-second-order kinetic model. The highest dye removal efficiency (87.15 %) was achieved using the black nickel mud catalyst after 30 minutes of reaction.



Author(s):  
Thaisa Caroline Andrade Siqueira ◽  
Isabella Zanette da Silva ◽  
Andressa Jenifer Rubio ◽  
Rosângela Bergamasco ◽  
Francielli Gasparotto ◽  
...  

Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g−1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.



2020 ◽  
Vol 16 ◽  
Author(s):  
Mohsina Ahmed ◽  
Abu Nasar

Background: Due to an abrupt increase in the contamination of freshwater systems by dye-containing wastewater, there is an urgent need to find robust and greener adsorbents for the elimination of dyes from the contaminated water. As the dyes not only change the appearance of water but are also a cause of many serious problems, which can be some time mutagenic and carcinogenic. Methods: This research paper is based on the use of adsorbent made from the peel of jackfruit (POJ). The adsorbent derived from agriculture waste was low cost and efficient for the elimination of methylene blue (MB) dye from aqueous media. Batch adsorption experiments were accompanied by varying the pH of the solution, contact time, POJ dosage, and initial MB concentration. Results: It was seen that adsorption of MB onto Jackfruit peel adsorbent follows pseudo-second-order (PSO) kinetics and Langmuir isotherm with maximum biosorption capacity (qm) of 232.55 mg/g. The thermodynamic study revealed that the adsorption was spontaneous, endothermic, and associated with the rise in entropy. Conclusion: In view of the low-cost and promising adsorption efficiency, the present investigation submits that that POJ is novel and economically feasible adsorbent for the removal of MB from aqueous solutions.



2020 ◽  
Vol 81 (6) ◽  
pp. 1180-1190
Author(s):  
You Wang ◽  
Qifan Peng ◽  
Naseem Akhtar ◽  
Xiaonong Chen ◽  
Yaqin Huang

Abstract Microporous fish waste-based activated carbon material (MFC) was prepared, with a large surface area of 2,193.52 m²/g, a pore size of 2.67 nm and micropore and total pore volumes of 0.9168 cm³/g and 0.9975 cm³/g, respectively. Adsorption efficiency of MFC was investigated by removal of methylene blue dye from wastewater. The Langmuir model and pseudo-second-order kinetics adequately described the adsorption process. MFC exhibited a high adsorption capacity of 476.19 mg/g at 30 °C, and reached equilibrium within 1 h. MFC could be an efficient and low-cost adsorbent for cationic dye removal during wastewater treatment.



2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Nady A. Fathy ◽  
Ola I. El-Shafey ◽  
Laila B. Khalil

The effectiveness of alkali-acid modification in enhancement the adsorption capacity of rice straw (RS) for removing a basic dye was studied. The obtained adsorbents were characterized by slurry pH, pHPZC, iodine number, methylene blue number, FTIR, and SEM analyses. Adsorption of methylene blue (MB) was described by the Langmuir, Freundlich, Tempkin, and Redlich-Peterson isotherm models. Effects of contact time, initial concentration of MB dye, pH of solution, adsorbent dose, salt concentration of NaCl, and desorbing agents on the removal of MB were reported. Kinetic studies were analyzed using the pseudo-first-order, pseudo-second-order, and the intraparticle diffusion models and were found to follow closely the pseudo-second-order model. Equilibrium data were best represented by the Langmuir and Redlich-Peterson isotherms. The adsorption capacities were varied between 32.6 and 131.5 mg/g for untreated and treated RS samples with NaOH-1M citric acid (ARS-1C), respectively. Adsorption behavior of the ARS-1C sample was experimented in a binary mixture containing methylene blue (basic) and reactive blue 19 (acidic) dyes which showed its ability to remove MB higher than RB19. Overall, the results indicate that the alkali-acid treatment proved to be potential modification for producing effective low-cost adsorbents for the removal of the basic dyes from wastewater.



2011 ◽  
Vol 8 (4) ◽  
pp. 1696-1707 ◽  
Author(s):  
N. Bhadusha ◽  
T. Ananthabaskaran

Methylene blue dye removal from aqueous solution was investigated using ZnCl2activated carbon prepared from wood apple outer shell (Limonia acidissima, biomass waste). Influence of agitation time, adsorbent dose, dye concentration, pH and temperature were explored. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Qo) was found to be 35.1 mg/g and the equilibrium parameter (RL) values indicate favourable adsorption. The experimental data were well fitted with Langmuir isotherm model and pseudo second order kinetic model. Desorption studies showed that ion exchange mechanism might be involved in the adsorption process.



2012 ◽  
Vol 610-613 ◽  
pp. 194-197
Author(s):  
Li Ping Chen ◽  
Si Qin Dalai

With sunflower straw as low-cost biosorbent, the biosorption of methylene blue (MB) from aqueous solution was studied by batch biosorption technique. The biosorption experiments were carried out under different conditions of solution pH, sunflower straw dose, and temperature. The results showed that biosorption of MB on to sunflower straw affected remarkably by the pH value, and the maximum biosorption amount was achieved at an optimum pH of 12.0; the equilibrium biosorption amount decreased as temperature was increasing, and the biosorption process might be depicted primly by Langmuir function; It was shown that the biosorption of methylene blue could be described by the pseudo-second-order equation.



2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Amal Touina ◽  
Safia Chernai ◽  
Bouhameur Mansour ◽  
Hafida Hadjar ◽  
Abdelkader Ouakouak ◽  
...  

AbstractA series of naturally occurring diatomaceous earth samples from Ouled Djilali, Mostaganem (Lower Chelif basin, Algeria northwestern), were investigated, which are characterized by the expansion and evolution during the Messinian age. Four varieties of diatomite were distinguished, characterized, and successfully used to adsorb methylene blue dye in aqueous medium. Several properties and characteristics of diatomite have been outlined using analytical methods such as X-ray fluorescence spectrometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption–desorption (BET), and scanning electron microscopy (SEM), as well as other complementary analysis tests. Results showed that silica and calcium carbonates were the main constituents of the diatomite samples (ranging between 32.8 and 61.5% for SiO2; and 13.8–25.9% for CaO), with a slight difference in chemical composition between selected samples. Typical for all diatomite samples, the XRD analysis suggests a high mass quantity of amorphous phase (Opal); high content of crystal phase was also registered. FTIR allowed determining the basic characteristic silica bands regarding diatomite samples. While the BET and SEM investigations revealed that the studied diatomite material has a highly porous structure and was very rich in diatoms. The maximum adsorption capacity of methylene blue that was calculated from the Langmuir isotherm model was 116.59 mg/g (for Ouled Djilali: OD05 sample) at 25 °C and pH 7.0. The diatomite from Mostaganemian (Ouled Djilali) deposit may find promising applications as low-cost adsorbent for dyes removal from water.



Sign in / Sign up

Export Citation Format

Share Document