scholarly journals Acute Photobiomodulation Does Not Influence Specific High-Intensity and Intermittent Performance in Female Futsal Players

Author(s):  
Izabela Aparecida dos Santos ◽  
Marina de Paiva Lemos ◽  
Vitória Helena Maciel Coelho ◽  
Alessandro Moura Zagatto ◽  
Moacir Marocolo ◽  
...  

The acute improvement of performance after photobiomodulation therapy (PBMT) has been reported in different types of exercise. However, the effect on high-intensity and intermittent exercises that are relevant for team sports is unknown. Thus, we evaluated the effect of prior acute application of PBMT on high-intensity and intermittent exercise performance, muscle oxygenation, and physiological/perceptual indicators in amateur female futsal players. Thirteen players (24.1 ± 3.7 years) performed a testing battery (countermovement jump (CMJ), Illinois agility and YoYo intermittent recovery test level 1 (YYIR1)) preceded by 15 min of PBMT (1 min 30 s each muscular point; five muscular points in each lower limbs) or 15 min of placebo (SHAM), in a counterbalanced randomized cross-over design (one-week in-between PBMT/SHAM). All test performance did not differ (p > 0.05) between PBMT and SHAM, as well as blood lactate, rating of perceived exertion, heart rate, and muscle oxygenation (via near infrared spectroscopy) responses. The acute application of PBMT prior to a physical testing battery does not influence high-intensity and intermittent exercises performance, neither physiological nor perceptual responses in amateur female futsal players.

2016 ◽  
Vol 11 (4) ◽  
pp. 425-431 ◽  
Author(s):  
Ibrahim Ouergui ◽  
Philip Davis ◽  
Nizar Houcine ◽  
Hamza Marzouki ◽  
Monia Zaouali ◽  
...  

The aim of the current study was to investigate the hormonal, physiological, and physical responses of simulated kickboxing competition and evaluate if there was a difference between winners and losers. Twenty athletes of regional and national level participated in the study (mean ± SD age 21.3 ± 2.7 y, height 170.0 ± 5.0 cm). Hormone (cortisol, testosterone, growth hormone), blood lactate [La], and glucose concentrations, as well as upper-body Wingate test and countermovement-jump (CMJ) performances, were measured before and after combats. Heart rate (HR) was measured throughout rounds 1, 2, and 3 and rating of perceived exertion (RPE) was taken after each round. All combats were recorded and analyzed to determine the length of different activity phases (high-intensity, low-intensity, and referee pause) and the frequency of techniques. Hormones, glucose, [La], HR, and RPE increased (all P < .001) precombat to postcombat, while a decrease was observed for CMJ, Wingate test performance, body mass (all P < .001), and time of high-intensity activities (P = .005). There was no difference between winners and losers for hormonal, physiological, and physical variables (P > .05). However, winners executed more jab cross, total punches, roundhouse kicks, total kicks, and total attacking techniques (all P < .042) than losers. Kickboxing is an intermittent physically demanding sport that induces changes in the stress-related hormones soliciting the anaerobic lactic system. Training should be oriented to enhance kickboxers’ anaerobic lactic fitness and their ability to strike at a sufficient rate. Further investigation is needed to identify possible differences in tactical and mental abilities that offer some insight into what makes winners winners.


2010 ◽  
Vol 20 (6) ◽  
pp. 447-456 ◽  
Author(s):  
Jonathan P. Little ◽  
Philip D. Chilibeck ◽  
Dawn Ciona ◽  
Scott Forbes ◽  
Huw Rees ◽  
...  

Consuming carbohydrate-rich meals before continuous endurance exercise improves performance, yet few studies have evaluated the ideal preexercise meal for high-intensity intermittent exercise, which is characteristic of many team sports. The authors’ purpose was to investigate the effects of low- and high-glycemic-index (GI) meals on metabolism and performance during high-intensity, intermittent exercise. Sixteen male participants completed three 90-min high-intensity intermittent running trials in a single-blinded random order, separated by ~7 d, while fasted (control) and 2 hr after ingesting an isoenergetic low-GI (lentil), or high-GI (potato and egg white) preexercise meal. Serum free fatty acids were higher and insulin lower throughout exercise in the fasted condition (p < .05), but there were no differences in blood glucose during exercise between conditions. Distance covered on a repeated-sprint test at the end of exercise was significantly greater in the low-GI and high-GI conditions than in the control (p < .05). Rating of perceived exertion was lower in the low-GI condition than in the control (p = .01). In a subsample of 5 participants, muscle glycogen availability was greater in the low- and high-GI conditions versus fasted control before the repeated-sprint test (p < .05), with no differences between low and high GI. When exogenous carbohydrates are not provided during exercise both low- and high-GI preexercise meals improve high-intensity, intermittent exercise performance, probably by increasing the availability of muscle glycogen. However, the GI does not influence markers of substrate oxidation during high-intensity, intermittent exercise.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiago Cetolin ◽  
Anderson Santiago Teixeira ◽  
Juliano Fernandes da Silva ◽  
Alessandro Haupenthal ◽  
Fábio Yuzo Nakamura ◽  
...  

This study aimed to examine the acute physiological effect of shuttle-run-based high-intensity intermittent exercise (HIIE) performed at the same relative speed (i. e., 100% PST−CAR) on sand (SAND) and grass (GRASS) in male junior soccer players. Seven Under-23 Brazilian national league (“Série A”) soccer players completed four testing sessions in either SAND or GRASS surface condition. The first two testing sessions consisted of performing a maximal progressive shuttle-run field protocol until volitional exhaustion (Carminatti's test, T-CAR), whereas the third and fourth sessions comprised a HIIE session on each ground surface. The HIIE session consisted of three 5-min bouts [12 s shuttle-run (with a direction change every 6 s)/12 s of passive rest] performed at 100% of T-CAR peak speed (PST−CAR) with 3 min of passive recovery between sets. Measurements of oxygen uptake (VO2), heart rate (HR), blood lactate concentration ([La]), and rating of perceived exertion (RPE) were performed during all conditions. The SAND condition elicited significantly higher %VO2peak (94.58 ± 2.73 vs. 87.45 ± 3.31%, p &lt; 0.001, d = 2.35), %HRpeak (93.89 ± 2.63 vs. 90.31 ± 2.87%, p &lt; 0.001, d = 1.30), RPE (8.00 ± 0.91 vs. 4.95 ± 1.23 a.u., p &lt; 0.001, d = 2.82), and [La] (10.76 ± 2.37 vs. 5.48 ± 1.13 mmol/L, p &lt; 0.010, d = 2.84). This study showed that higher internal workloads are experienced by the players during a single HIIE session performed on a softer surface as SAND, even when the exercise intensity was individualized based on 100%PST−CAR.


Author(s):  
Ian Craig Perkins ◽  
Sarah Anne Vine ◽  
Sam David Blacker ◽  
Mark Elisabeth Theodorus Willems

We examined the effect of New Zealand blackcurrant (NZBC) extract on high-intensity intermittent running and postrunning lactate responses. Thirteen active males (age: 25 ± 4 yrs, height: 1.82 ± 0.07 m, body mass: 81 ± 14 kg, V̇O2max: 56 ± 4 ml∙kg-1∙min-1, v V̇O2max: 17.6 ± 0.8 km∙h-1) performed a treadmill running protocol to exhaustion, which consisted of stages with 6 × 19 s of sprints with 15 s of low-intensity running between sprints. Interstage rest time was 1 min and stages were repeated with increasing sprint speeds. Subjects consumed capsuled NZBC extract (300 mg∙day-1 CurraNZ; containing 105 mg anthocyanin) or placebo for 7 days (double-blind, randomized, crossover design, wash-out at least 14 days). Blood lactate was collected for 30 min postexhaustion. NZBC increased total running distance by 10.6% (NZBC: 4282 ± 833 m, placebo: 3871 ± 622 m, p = .02), with the distance during sprints increased by 10.8% (p = .02). Heart rate, oxygen uptake, lactate and rating of perceived exertion were not different between conditions for the first 4 stages completed by all subjects. At exhaustion, blood lactate tended to be higher for NZBC (NZBC: 6.01 ± 1.07 mmol∙L-1, placebo: 5.22 ± 1.52 mmol∙L-1, p = .07). There was a trend for larger changes in lactate following 15 min (NZBC: -2.89 ± 0.51 mmol∙L-1, placebo: -2.46 ± 0.39 mmol∙L-1, p = .07) of passive recovery. New Zealand blackcurrant extract (CurraNZ) may enhance performance in sports characterized by high-intensity intermittent exercise as greater distances were covered with repeated sprints, there was higher lactate at exhaustion, and larger changes in lactate during early recovery after repeated sprints to exhaustion.


2015 ◽  
Vol 10 (5) ◽  
pp. 605-612 ◽  
Author(s):  
Malte Krüger ◽  
Markus de Mareés ◽  
Karl-Heinrich Dittmar ◽  
Billy Sperlich ◽  
Joachim Mester

Purpose:To examine the effects of a whole-body cryotherapy (WBC) protocol (3 min at –110°C) on acute recovery and key variables of endurance performance during high-intensity intermittent exercise in a thermoneutral environment.Methods:Eleven endurance athletes were tested twice in a randomized crossover design in which 5 × 5 min of high-intensity running (HIR) were followed by 1 h of passive rest at ~22°C, including either 3 min of whole-body exposure to –110°C (WBC) or a placebo intervention of 3 min walking (PBO). A ramp-test protocol was performed before HIR (R1) and after the 1-h recovery period (R2). Time to exhaustion (tlim) was measured along with alterations in oxygen content of the vastus lateralis (TSI), oxygen consumption (VO2), capillary blood lactate, heart rate (HR), and rating of perceived exertion (RPE) during submaximal and maximal running.Results:The difference in tlim between R1 and R2 was lower in WBC than in PBO (P < .05, effect size d = 1.13). During R2, TSI was higher in WBC during submaximal and maximal running (P < .01, d = 0.68−1.01). In addition, VO2, HR, and RPE were lower at submaximal level of R2 after WBC than in PBO (P = .04 to <.01, d = 0.23−0.83).Conclusion:WBC improves acute recovery during high-intensity intermittent exercise in thermoneutral conditions. The improvements might be induced by enhanced oxygenation of the working muscles, as well as a reduction in cardiovascular strain and increased work economy at submaximal intensities.


Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Chatzinikolaou ◽  
N Cornelis ◽  
J Claes ◽  
R Buys ◽  
I Fourneau ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background. Intermittent claudication (IC) is characterized by a cramp-like pain during walking caused by insufficient blood flow to the lower limbs during exercise. The walking impairment caused by IC can lead to a vicious cycle of physical inactivity, decreased quality of life and progression of cardiovascular risk factors. Although current evidence supports the benefits of walking training to increase walking capacity, little is known about its effect on muscle oxygenation in this population. Purpose. The aim of this study was to investigate the effects of a hybrid 12-week walking program (combined center- and home-based walking) on muscle oxygenation of IC patients. Methods. Thirty-seven patients with IC were enrolled of which 33 completed follow-up measurements (age 71 ± 9 yrs, body mass index 26 ± 4 kg/m2, ankle brachial index (ABI) 0.7 ± 0.2) after the 12-week intervention. Outcome measures were pain-free walking capacity (PFWC), maximal walking capacity (MWC) and calf muscle oxygenation, respectively evaluated using a submaximal treadmill test, a Gardner treadmill test and near-infrared spectroscopy (NIRS). Results. After the 12-week intervention, significantly higher values (reported as median and interquartiles) for PFWC (162 m [122, 217] to 272 m [150, 401]; p &lt; 0.001) and MWC (458 m [260, 638] to 611 m [333, 840]; p &lt; 0.001) were observed. As shown in Table 1, NIRS data measured during the submaximal walking test showed an increased availability of oxygenated hemoglobin (p = 0.048) and decreased deoxyhemoglobin (p = 0.013), while total hemoglobin remained unchanged after the 12-week intervention. During the Gardner test, time to reach minimum tissue saturation index (TSI%) increased (p &lt; 0.001), yet no change was noted on minimum TSI during exercise, despite increased MWC. Despite a trend towards faster recovery times, no significant changes were observed after the 12-week intervention. Conclusion. Hybrid walking exercise therapy improves deoxygenation kinetics and walking capacity in IC patients. Increased availability of oxygenated hemoglobin might underly the improvement in walking capacity.


2021 ◽  
Vol 78 (1) ◽  
pp. 209-217
Author(s):  
Bruna Costa ◽  
Danielly M. Ferreira ◽  
Petrus Gantois ◽  
Dalton de Lima-Júnior ◽  
Witalo Kassiano ◽  
...  

Abstract Performing repetitions to failure (RF) is a strategy that might acutely reduce neuromuscular performance, as well as increase the rating of perceived exertion (RPE) and the internal training load (ITL) during and after a resistance training (RT) session. Thus, this study aimed to analyze the acute effects of RF or repetitions not to failure (RNF) on countermovement jump (CMJ) performance and the ITL in trained male adults. Eleven men performed two experimental protocols in randomized order (RF vs. RNF). Under the RF condition, participants performed three sets of the leg extension exercise using 100% of the 10RM load and rest intervals of 180-s between sets. Under the RNF condition, participants were submitted to six sets of five repetitions with the same intensity and an 80-s rest interval between sets in the same exercise. The CMJ test was analyzed before and following (15-s and 30-min, respectively) each experimental session. The ITL was evaluated by multiplying the RPE and the total session time, 30-min after the protocol. No main effect or interaction time vs. condition was found for CMJ performance (p > 0.05). In contrast, the ITL showed higher values under the RF condition (p = 0.003). Therefore, even though RF-induced a greater ITL, our results suggest that adopting this strategy in one single-joint exercise for the lower limbs does not seem sufficient to reduce CMJ height.


2001 ◽  
Vol 33 (11) ◽  
pp. 1953-1958 ◽  
Author(s):  
MIKE DOHERTY ◽  
PAUL M. SMITH ◽  
MICHAEL G. HUGHES ◽  
DAVID COLLINS

2019 ◽  
Vol 34 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Brenton Surgenor ◽  
Matthew Wyon

OBJECTIVE: The session rating of perceived exertion (session-RPE) is a practical and non-invasive method that allows a quantification of internal training load (ITL) in individual and team sports. As yet, no study has investigated its construct validity in dance. This study examines the convergent validity between the session-RPE method and an objective heart rate (HR)-based method of quantifying the similar ITL in vocational dance students during professional dance training. METHODS: Ten dance students (4 male, 20±1.16 yrs; 6 female, 20±0.52 yrs) participated in this study. During a normal week of training, session-RPE and HR data were recorded in 96 individual sessions. HR data were analysed using Edwards-TL method. Correlation analysis was used to evaluate the convergent validity between the session-RPE and Edwards-TL methods for assessing ITL in a variety of training modes (contemporary, ballet, and rehearsal). RESULTS: The overall correlation between individual session-RPE and Edwards-TL was r=0.72, p<0.0001, suggesting there was a statistically significantly strong positive relationship between session-RPE and Edwards-TL. This trend was observed across all the training modes: rehearsal sessions (r=0.74, p=0.001), contemporary (r=0.60, p=0.001), and ballet (r=0.46, p=0.018) sessions. CONCLUSIONS: This study shows that session-RPE can be considered as a valid method to assess ITL for vocational dance students, and that notably there is some variation between session-RPE and HR-based TL in different dance activities.


Sign in / Sign up

Export Citation Format

Share Document