scholarly journals Long-Term Heavy Metal Retention by Mangroves and Effect on Its Growth: A Field Inventory and Scenario Simulation

Author(s):  
Anh Nguyen ◽  
Otto Richter ◽  
Bao V.Q. Le ◽  
Nguyen Thi Kim Phuong ◽  
Kim Chi Dinh

The ability of mangroves in taking up and storing heavy metal (HM) helps in reducing HM pollution. However, HMs likewise adversely affect the growth of mangroves. We assess the effects of the long-term soil HMs enrichment on the growth of Rhizophora apiculata forest in the Can Gio Mangrove Forest (Southern Vietnam) in different environmental conditions of soil salinity, ground elevation, and tree density based on a novel set of measured data. These data were analyzed and were used to calibrate and validate for a tree growth model with influencing factors salinity, elevation, tree density, and heavy metals content. Three scenario simulations were performed to predict the mangrove dynamics under different levels of heavy metal pollution in combined environmental conditions of salinity and elevation. Simulation results show the decline of total forest biomass from 1,750,000 tons (baseline scenario with no HM pollution) down to 850,000 tons and 350,000 tons for the current HM pollution and double HM pollution scenarios, respectively. Both data analysis and simulations have shown that although mangroves can assist in reducing HM pollution, the quality and health of this ecosystem will be severely affected if the environment is excessively polluted. In addition, a data-and-model driven management tool is devised for the sustainable management of the mangrove environmental resources.

Author(s):  
Blaurock-Busch E

The heavy metal burden of patients with Autism spectrum disorders (ASD) has been widely discussed [1-5]. Present knowledge suggests that ASD patients, compared to ‘normal’s’ show a greater metal burden, which may be a cause of the ASD pathogenesis, possibly due to a limited detoxification potential. We thus aimed to evaluate if the metal burden of ASD children is due to comprised detoxification ability, and if missing of enzymes such as the glutathione-S-transferases provide an explanation, or if additional factors play a role. Genetically, we noticed a slight difference in the detoxification ability of the ASD group compared to the Control group. In the ASD group, carrier of the genotype GSTT1 null genotype (i.e. the homozygous loss) are 1.7 times more common as in the Control group and the GSTT1 allele is more frequent in the ASD patient collective. These findings are not statistically significant but indicate a trend. In addition, our data indicates that levels of potentially toxic metals in blood and hair of both groups demonstrate a similar immediate and long-term exposure. However, 36% of the ASD group showed signs of zinc deficiency compared to 11% of the Control group and this points towards inefficiency of the Phase I detoxification pathway. More research is needed to explore the role of other elements in the detoxification pathway.


1995 ◽  
Vol 30 (2) ◽  
pp. 265-276 ◽  
Author(s):  
Denis Bussières ◽  
Raynald Côté ◽  
Clément Richard ◽  
Édith St-Pierre

Abstract Long-term copper toxicity has been demonstrated in Scenedesmus quadricauda. Upon continuous exposure to copper ions at 250 μg/L, the algae responded by a sharp increase in the synthesis of complexing polypeptides to chelate Cu. Complexing polypeptides gradually decreased, as observed by six sampling tests over 732 h, resembling to a negative exponential curve. This gradual diminution is considered to be a prime mechanism of acclimation or of adaptation to a heavy metal contaminated environment.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rui Zhu ◽  
Galen Newman

AbstractThere has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change’s probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.


2016 ◽  
Vol 43 (2) ◽  
pp. 172-180 ◽  
Author(s):  
ALICE B. KELLY ◽  
A. CLARE GUPTA

SUMMARYThis study considers the issue of security in the context of protected areas in Cameroon and Botswana. Though the literature on issues of security and well-being in relation to protected areas is extensive, there has been less discussion of how and in what ways these impacts and relationships can change over time, vary with space and differ across spatial scales. Looking at two very different historical trajectories, this study considers the heterogeneity of the security landscapes created by Waza and Chobe protected areas over time and space. This study finds that conservation measures that various subsets of the local population once considered to be ‘bad’ (e.g. violent, exclusionary protected area creation) may be construed as ‘good’ at different historical moments and geographical areas. Similarly, complacency or resignation to the presence of a park can be reversed by changing environmental conditions. Changes in the ways security (material and otherwise) has fluctuated within these two protected areas has implications for the long-term management and funding strategies of newly created and already existing protected areas today. This study suggests that parks must be adaptively managed not only for changing ecological conditions, but also for shifts in a protected area's social, political and economic context.


2012 ◽  
Vol 88 (05) ◽  
pp. 547-552
Author(s):  
Ling Li ◽  
Sergios Karatzos ◽  
Jack Saddler

Increasing concerns of oil security, greenhouse gas emissions, and sustainability have encouraged nations to consider the contribution that agriculture/forestry for bioenergy (and biofuels in particular) could make as alternatives to current fossil-based energy and transportation fuels. Despite China's large population and geographical size, it has only relatively recently developed into a highly industrialized and energy-dependent economy. Coal is, and will remain, China's dominant energy source. However, over the last few years with China's growing middle class, increasing growth in production and sale of cars/trucks and a growing chemical based sector, oil and its derivatives are predicted to experience the fastest fossil fuel growth. China's ability to produce so-called “first-generation” or conventional biofuels from sugar, starch or vegetable oil based plants is very restricted because of “food vs. fuel” issues. Thus, biomass-based and forest-based biofuels, in particular, can form a medium-to-long-term solution that could contribute to China's national biofuels targets. Oilseed trees have been suggested as an initial forest-based biodiesel strategy with about 13 million ha of marginal land identified for possible plantation. It is also estimated that 17 million tonnes of cellulosic ethanol per annum could be derived from forest biomass that is currently available in China.


2008 ◽  
Vol 48 (3) ◽  
pp. 296 ◽  
Author(s):  
C. J. Birch ◽  
G. McLean ◽  
A. Sawers

This paper reports on the use of APSIM – Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004–05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004–05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004–05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document