scholarly journals Muscle Damage and Performance after Single and Multiple Simulated Matches in University Elite Female Soccer Players

Author(s):  
Tai-Ying Chou ◽  
Kazunori Nosaka ◽  
Trevor C. Chen

The present study aimed to compare changes in muscle damage and performance parameters after playing single versus multiple soccer matches to examine fixture congestion effects on performance. Twelve elite female university soccer players performed single, three and six consecutive 90-min bouts of the Loughborough Intermittent Shuttle Test (LIST) with ≥12-weeks between conditions in a pseudo-randomized order. Heart rate, blood lactate, rating of perceived exertion and covering distance in each LIST were examined. Changes in several types of muscle damage (e.g., maximal voluntary isometric torque of the knee extensors: MVC-KE) and performance measures (e.g., Yo-Yo Intermittent Recovery Test level 1: YYIR1) were taken before each LIST, 1 h, and 1–5 d after the last LIST. The total distance covered during the LIST was shorter (p < 0.05) in the 2nd–3rd, or 2nd–6th LISTs when compared with the 1st LIST. Changes (p < 0.05) in all measures were observed after the LIST, and the greatest changes were observed after the six than after the three LISTs followed by one LIST (e.g., largest changes in MVC-KE: −26 > −20 > −14%; YYIR1: −31 > −26 > −11%). Many of the variables did not recover to the baseline for 5 d after six LISTs. These suggest that fixture congestion induces greater muscle damage and performance decline than a single match.

Author(s):  
Sullivan Coppalle ◽  
Guillaume Ravé ◽  
Jason Moran ◽  
Iyed Salhi ◽  
Abderraouf Ben Abderrahman ◽  
...  

This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p =0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p =0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT.


2021 ◽  
Vol 33 (2) ◽  
pp. 65-69
Author(s):  
C. Eric Heidorn ◽  
Brandon J. Dykstra ◽  
Cori A. Conner ◽  
Anthony D. Mahon

Purpose: This study examined the physiological, perceptual, and performance effects of a 6% carbohydrate (CHO) drink during variable-intensity exercise (VIE) and a postexercise test in premenarchal girls. Methods: A total of 10 girls (10.4 [0.7] y) participated in the study. VO2peak was assessed, and the girls were familiarized with VIE and performance during the first visit. The trial order (CHO and placebo) was randomly assigned for subsequent visits. The drinks were given before VIE bouts and 1-minute performance (9 mL/kg total). Two 15-minute bouts of VIE were completed (10 repeated sequences of 20%, 55%, and 95% power at VO2peak and maximal sprints) before a 1-minute performance sprint. Results: The mean power, peak power, heart rate (HR), %HRpeak, and rating of perceived exertion during VIE did not differ between trials. However, the peak power decreased, and the rating of perceived exertion increased from the first to the second bout. During the 1-minute performance, there were no differences between the trial (CHO vs placebo) for HR (190 [9] vs 189 [9] bpm), %HRpeak (97.0% [3.2%] vs 96.6% [3.0%]), rating of perceived exertion (7.8 [2.3] vs 8.1 [1.9]), peak power (238 [70] vs 235 [60] W), fatigue index (54.7% [10.0%] vs 55.9% [12.8%]), or total work (9.4 [2.6] vs 9.4 [2.1] kJ). Conclusion: CHO supplementation did not alter physiological, perceptual, or performance responses during 30 minutes of VIE or postexercise sprint performance in premenarchal girls.


1998 ◽  
Vol 8 (3) ◽  
pp. 230-240 ◽  
Author(s):  
JesÚs Rico-Sanz ◽  
Walter R. Frontera ◽  
Paul A. Molé ◽  
Miguel A. Rivera ◽  
Anita Rivera-Brown ◽  
...  

This study examined the nutritional and performance status of elite soccer players during intense training. Eight male players (age 17 ± 2 years) of the Puerto Rican Olympic Team recorded daily activities and food intake over 12 days. Daily energy expenditure was 3,833 ± 571 (SD) kcal, and energy intake was 3,952 ± 1,071 kcal, of which 53.2 ± 6.2% (8.3 g ⋅ kg BW−1) was from carbohydrates (CHO), 32.4 ± 4.0% from fat, and 14.4 ± 2.3% from protein. With the exception of calcium, all micronutrients examined were in accordance with dietary guidelines. Body fat was 7.6 ± 1.1% of body weight. Time to completion of three runs of the soccer-specific test was 37.65 ± 0.62 s, and peak torques of the knee flexors and extensors at 60° ⋅ s−1 were 139 ± 6 and 225 ± 9 N ⋅ m, respectively. Players' absolute amounts of CHO seemed to be above the minimum recommended intake to maximize glycogen storage, but calcium intakes were below recommended. Their body fat was unremarkable, and they had a comparatively good capacity to endure repeated bouts of intense soccer-specific exercise and to exert force with their knee extensors and flexors.


Author(s):  
Devin Goddard McCarthy ◽  
William Bostad ◽  
Fiona Jane Powley ◽  
Jonathan P. Little ◽  
Douglas Richards ◽  
...  

There is growing interest in the effect of exogenous ketone body supplementation on exercise responses and performance. The limited studies to date have yielded equivocal data, likely due in part to differences in dosing strategy, increase in blood ketones, and participant training status. Using a randomized, double-blind, counterbalanced design, we examined the effect of ingesting a ketone monoester (KE) supplement (600 mg/kg body mass) or flavour-matched placebo in endurance-trained adults (n=10 males, n=9 females; VO2peak=57±8 ml/kg/min). Participants performed a 30-min cycling bout at ventilatory threshold intensity (71±3% VO2peak), followed 15 min later by a 3 kJ/kg body mass time-trial. KE versus placebo ingestion increased plasma [β-hydroxybutyrate] before exercise (3.9±1.0 vs 0.2±0.3 mM, p<0.0001, dz=3.4), ventilation (77±17 vs 71±15 L/min, p<0.0001, dz=1.3) and heart rate (155±11 vs 150±11 beats/min, p<0.001, dz=1.2) during exercise, and rating of perceived exertion at the end of exercise (15.4±1.6 vs 14.5±1.2, p<0.01, dz=0.85). Plasma [β-hydroxybutyrate] remained higher after KE vs placebo ingestion before the time-trial (3.5±1.0 vs 0.3±0.2 mM, p<0.0001, dz=3.1), but performance was not different (KE: 16:25±2:50 vs placebo: 16:06±2:40 min:s, p=0.20; dz=0.31). We conclude that acute ingestion of a relatively large KE bolus dose increased markers of cardiorespiratory stress during submaximal exercise in endurance-trained participants. Novelty bullets: •Limited studies have yielded equivocal data regarding exercise responses after acute ketone body supplementation. •Using a randomized, double-blind, placebo-controlled, counterbalanced design, we found that ingestion of a large bolus dose of a commercial ketone monoester supplement increased markers of cardiorespiratory stress during cycling at ventilatory threshold intensity in endurance-trained adults.


2019 ◽  
Vol 66 (1) ◽  
pp. 131-141
Author(s):  
Petros G. Botonis ◽  
Argyris G. Toubekis ◽  
Theodoros I. Platanou

AbstractWe investigated the effectiveness of a short-duration training period including an overloaded (weeks 1 and 2) and a reduced training load period (weeks 3 and 4) on wellness, swimming performance and a perceived internal training load in eight high-level water-polo players preparing for play-offs. The internal training load was estimated daily using the rating of perceived exertion (RPE) and session duration (session-RPE). Perceived ratings of wellness (fatigue, muscle soreness, sleep quality, stress level and mood) were assessed daily. Swimming performance was evaluated through 400-m and 20-m tests performed before (baseline) and after the end of weeks 2 and 4. In weeks 3 and 4, the internal training load was reduced by 19.0 ± 3.8 and 36.0 ± 4.7%, respectively, compared to week 1 (p = 0.00). Wellness was improved in week 4 (20.4 ± 2.8 AU) compared to week 1 and week 2 by 16.0 ± 2.2 and 17.3 ± 2.9 AU, respectively (p =0.001). At the end of week 4, swimming performance at 400-m and 20-m tests (299.0 ± 10.2 and 10.2 ± 0.3 s) was improved compared to baseline values (301.4 ± 10.9 and 10.4 ± 0.4 s, p < 0.05) and the overloading training period (week 2; 302.9 ± 9.0 and 10.4 ± 0.4 s, p < 0.05). High correlations were observed between the percentage reduction of the internal training load from week 4 to week 1 (-25.3 ± 5.5%) and the respective changes in 20-m time (-2.1 ± 2.2%, r = 0.88, p < 0.01), fatigue perception (39.6 ± 27.1%), muscle soreness (32.5 ± 26.6%), stress levels (25.6 ± 15.1%) and the overall wellness scores (28.6 ± 21.9%, r = 0.74-0.79, p < 0.05). The reduction of the internal training load improved the overall perceived wellness and swimming performance of players. The aforementioned periodization approach may be an effective training strategy in the lead-up to play-off tournaments.


2016 ◽  
Vol 41 (6) ◽  
pp. 666-673 ◽  
Author(s):  
Anthony G. Whitty ◽  
Aron J. Murphy ◽  
Aaron J. Coutts ◽  
Mark L. Watsford

The aim of this study was to determine the effects of high- and low-cadence interval training on the freely chosen cadence (FCC) and performance in endurance-trained cyclists. Sixteen male endurance-trained cyclists completed a series of submaximal rides at 60% maximal power (Wmax) at cadences of 50, 70, 90, and 110 r·min−1, and their FCC to determine their preferred cadence, gross efficiency (GE), rating of perceived exertion, and crank torque profile. Performance was measured via a 15-min time trial, which was preloaded with a cycle at 60% Wmax. Following the testing, the participants were randomly assigned to a high-cadence (HC) (20% above FCC) or a low-cadence (LC) (20% below FCC) group for 18 interval-based training sessions over 6 weeks. The HC group increased their FCC from 92 to 101 r·min−1 after the intervention (p = 0.01), whereas the LC group remained unchanged (93 r·min−1). GE increased from 22.7% to 23.6% in the HC group at 90 r·min−1 (p = 0.05), from 20.0% to 20.9% at 110 r·min−1 (p = 0.05), and from 22.8% to 23.2% at their FCC. Both groups significantly increased their total distance and average power output following training, with the LC group recording a superior performance measure. There were minimal changes to the crank torque profile in both groups following training. This study demonstrated that the FCC can be altered with HC interval training and that the determinants of the optimal cycling cadence are multifactorial and not completely understood. Furthermore, LC interval training may significantly improve time-trial results of short duration as a result of an increase in strength development or possible neuromuscular adaptations.


2020 ◽  
Vol 41 (14) ◽  
pp. 1009-1016
Author(s):  
Amornpan Ajjimaporn ◽  
Papatsorn Ramyarangsi ◽  
Vorasith Siripornpanich

AbstractWe examined effects of a 20-min nap following 3 h of sleep deprivation on brain wave activity, auditory reaction time, the running-based anaerobic sprint test, leg muscle strength and the rating of perceived exertion in male college soccer players. Eleven players underwent three sleep conditions; normal sleep, sleep deprivation and 20-min nap after sleep deprivation. The sleep deprivation demonstrated an increase in the mean power of delta waves over the frontal area and a decrease in the mean power of alpha waves over the parietal area compared to the normal sleep. The nap and the sleep deprivation showed an increase in auditory reaction time compared with those in the normal sleep. The sleep deprivation demonstrated a decrease in the running-based anaerobic sprint test compared to the normal sleep, whereas the nap has partially reversed only minimal power and average power of the running-based anaerobic sprint test. The nap showed a recovery effect on leg muscle strength, but not on the rating of perceived exertion compared with the sleep deprivation. Thus, a 20-min nap after sleep deprivation did not completely return brain activity back to active state and did not entirely reverse the negative impact of sleep deprivation on soccer performance in soccer players.


2017 ◽  
Vol 12 (10) ◽  
pp. 1370-1377 ◽  
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Hamit Cihan ◽  
Del P. Wong

Purpose: To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Methods: Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La−) were determined at the end of each SSG. Results: The SBD format elicited significantly lower %HRmax responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La− and RPE responses than SBD and CON in all formats (P < .05). Conclusions: These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.


2017 ◽  
Vol 12 (5) ◽  
pp. 668-675 ◽  
Author(s):  
Dajo Sanders ◽  
Grant Abt ◽  
Matthijs K.C. Hesselink ◽  
Tony Myers ◽  
Ibrahim Akubat

Purpose:To assess the dose-response relationships between different training-load methods and aerobic fitness and performance in competitive road cyclists.Methods:Training data from 15 well-trained competitive cyclists were collected during a 10-wk (December–March) preseason training period. Before and after the training period, participants underwent a laboratory incremental exercise test with gas-exchange and lactate measures and a performance assessment using an 8-min time trial (8MT). Internal training load was calculated using Banister TRIMP, Edwards TRIMP, individualized TRIMP (iTRIMP), Lucia TRIMP (luTRIMP), and session rating of perceived exertion (sRPE). External load was measured using Training Stress Score (TSS).Results:Large to very large relationships (r = .54–.81) between training load and changes in submaximal fitness variables (power at 2 and 4 mmol/L) were observed for all training-load calculation methods. The strongest relationships with changes in aerobic fitness variables were observed for iTRIMP (r = .81 [95% CI .51–.93, r = .77 [95% CI .43–.92]) and TSS (r = .75 [95% CI .31–.93], r = .79 [95% CI .40–.94]). The strongest dose-response relationships with changes in the 8MT test were observed for iTRIMP (r = .63 [95% CI .17–.86]) and luTRIMP (r = .70 [95% CI .29–.89).Conclusions:Training-load quantification methods that integrate individual physiological characteristics have the strongest dose-response relationships, suggesting this to be an essential factor in the quantification of training load in cycling.


Sign in / Sign up

Export Citation Format

Share Document