scholarly journals Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects

Author(s):  
Elsi Haverinen ◽  
Mariana F. Fernandez ◽  
Vicente Mustieles ◽  
Hanna Tolonen

Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden among the European population. Current knowledge supports the notion that endocrine-disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemiological studies focusing on the association between MetS or its individual components (e.g., obesity, insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances (bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far, human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures on the development of individual MetS components. The strength of the association varies between the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and heterogeneous, and mainly represent studies from North America and Asia, highlighting the need for well-conducted and harmonized HBM programmes among the European population. Rigorous and ongoing HBM in combination with health monitoring can help to identify the most concerning EDC exposures, to guide future risk assessment and policy actions.

2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
E Haverinen ◽  
R Lange ◽  
H Tolonen

Abstract Increasing prevalence of metabolic syndrome (MetS) is causing significant health burden among the European population. Current knowledge supports the notion that endocrine disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized life-style related risk factors for MetS. In relation to the Human biomonitoring initiative (HBM4EU) five priority substances (Bisphenol A, Per- and polyfluoroalkyl substances (PFASs), Phthalates, Cadmium and Arsenic) and their association with adverse metabolic health effects were examined. A methodological framework for scoping reviews was followed to increase consistency and transparency throughout the process. A literature review was conducted to identify epidemiological studies focusing on the association between MetS or its individual components and the five HBM4EU priority substances. Human biomonitoring studies have been able to present evidence supporting EDC exposure and development of individual MetS components; however the strength of the association varies between the components and EDCs. Most of the identified literature examined Bisphenol A and Phthalate exposure, usually targeting obesity, anthropometrics or glucose metabolism. Evidence suggests a positive association between Bisphenol A and Phthalate exposure and obesity-related components. The substance group of PFASs indicated weakest association, as the results were inconsistent and were suggestive only for a positive association with development of dyslipidaemia. Current evidence on metabolic disturbances and EDCs are inconclusive and fragmented, hence establishing harmonized and standardized human biomonitoring procedures among the European population are needed. Rigorous and ongoing human biomonitoring in combination with health monitoring could provide comprehensive information on EDC exposure and association of metabolic disturbances. Key messages EDC exposure is ubiquitous within European population, hence more human biomonitoring in combination with health surveys is needed to strengthen knowledge on human’s metabolic health. MetS is an increasing global health concern, which requires novel approaches to tackle the challenge.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Gemma Chiva-Blanch ◽  
Lina Badimon

Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors which severely increases the risk of type II diabetes and cardiovascular disease. Several epidemiological studies have observed a negative association between polyphenol intake and MetS rates. Nevertheless, there are relatively small numbers of interventional studies evidencing this association. This review is focused on human interventional trials with polyphenols as polyphenol-rich foods and dietary patterns rich in polyphenols in patients with MetS. Current evidence suggests that polyphenol intake has the potential to alleviate MetS components by decreasing body weight, blood pressure, and blood glucose and by improving lipid metabolism. Therefore, high intake of polyphenol-rich foods such as nuts, fruits, vegetables, seasoning with aromatic plants, spices, and virgin olive oil may be the cornerstone of a healthy diet preventing the development and progression of MetS, although there is no polyphenol or polyphenol-rich food able to influence all MetS features. However, inconsistent results have been found in different trials, and more long-term randomized trials are warranted to develop public health strategies to decrease MetS rates.


2020 ◽  
Vol 21 (6) ◽  
pp. 2078 ◽  
Author(s):  
Laura Lucaccioni ◽  
Viola Trevisani ◽  
Lucia Marrozzini ◽  
Natascia Bertoncelli ◽  
Barbara Predieri ◽  
...  

Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 137 ◽  
Author(s):  
Eleonora Rotondo ◽  
Francesco Chiarelli

The purpose of this article is to review the evidence linking background exposure to endocrine-disrupting chemicals (EDCs) with insulin resistance in children. Although evidence in children is scarce since very few prospective studies exist even in adults, evidence that EDCs might be involved in the development of insulin resistance and related diseases such as obesity and diabetes is accumulating. We reviewed the literature on both cross-sectional and prospective studies in humans and experimental studies. Epidemiological studies show a statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, aromatic polycyclic hydrocarbides, or dioxins and insulin resistance.


2010 ◽  
Vol 75 (4) ◽  
pp. 471-492 ◽  
Author(s):  
Yan Cheng ◽  
Hui-ming Chen ◽  
Wen-lian Yu ◽  
Yuan Cui ◽  
Li-li Zhou ◽  
...  

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have become emerging persistent organic pollutants (POPs), but their health effects on humans remain controversial because of contradictory experimental and epidemiological studies. In this study, we used three-dimensional quantitative structure–activity relationship (3D-QSAR) method by applying Surflex-dock to study and compare the binding modes between PFOS, PFOA and eight other endocrine disrupting chemicals, and human estrogen receptor (hERα), human androgen receptor (hAR) and human thyroid receptor (hTRβ). Molecular docking and hydrogen bond studies indicated that PFOS and PFOA had high affinity potency toward hERα, hAR and hTRβ due to low free binding energies, while the highest value was obtained toward hTRβ. This means that PFOS and PFOA might have more disrupting effects on thyroid than on estrogen and androgen receptors. Hydrogen bonding interactions revealed that Met313 in hTRβ might act as the critical amino acid residue in the binding of ligand–receptor complex, which would provide an explanation for the interaction mechanisms. Our results provide an important reference and direction for the interaction mode and mechanism study between PFOS/PFOA and human endocrine systems.


2012 ◽  
Vol 49 (2) ◽  
pp. R61-R67 ◽  
Author(s):  
Abby F Fleisch ◽  
Robert O Wright ◽  
Andrea A Baccarelli

Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.


2001 ◽  
Vol 9 (2) ◽  
pp. 61-80 ◽  
Author(s):  
D Crump

Statistical meta-analysis of large and diverse data sets has indicated that amphibians have been declining worldwide since the 1960s. Exposure to UV-B radiation (280–320 nm) and endocrine-disrupting chemicals (EDCs) have been considered as possible hypotheses to explain the observed declines. Equivocal conclusions have been reached with respect to the effects of UV-B on amphibian populations. Field and laboratory studies employing both ecologically relevant and enhanced UV-B levels have been conducted using a variety of amphibian species and reports differ with respect to the most sensitive developmental stage and the ultimate implications. UV-B radiation has also been shown to interact with other stressors (e.g., pesticides, polycyclic aromatic hydrocarbons, low pH) resulting in decreased survivorship for several amphibian species. Limited evidence of reproductive toxicity of xenobiotics in amphibians exist; however, early exposure to EDCs could cause abnormal development of the amphibian reproductive system, inhibit vital hormone messages that drive metamorphosis, and ultimately contribute to the decline of some amphibian populations. The available evidence suggests that more than one agent is contributing to amphibian population declines and the following review narrows the focus to address the existing data on the effects of UV-B, alone and in combination with other stressors, and EDCs on amphibian survivorship and development. Key words: amphibians, UV-B radiation, endocrine-disrupting chemicals, declines, review.


Reproduction ◽  
2011 ◽  
Vol 142 (5) ◽  
pp. 633-646 ◽  
Author(s):  
Zelieann R Craig ◽  
Wei Wang ◽  
Jodi A Flaws

Endocrine-disrupting chemicals (EDCs) are exogenous agents with the ability to interfere with processes regulated by endogenous hormones. One such process is female reproductive function. The major reproductive organ in the female is the ovary. Disruptions in ovarian processes by EDCs can lead to adverse outcomes such as anovulation, infertility, estrogen deficiency, and premature ovarian failure among others. This review summarizes the effects of EDCs on ovarian function by describing how they interfere with hormone signaling via two mechanisms: altering the availability of ovarian hormones, and altering binding and activity of the hormone at the receptor level. Among the chemicals covered are pesticides (e.g. dichlorodiphenyltrichloroethane and methoxychlor), plasticizers (e.g. bisphenol A and phthalates), dioxins, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene).


2021 ◽  
Vol 8 ◽  
Author(s):  
Hongbin Guo ◽  
Jun Ding ◽  
Qi Liu ◽  
Yusheng Li ◽  
Jieyu Liang ◽  
...  

Background: The association between vitamin C and metabolic syndrome (MetS) has been evaluated in several epidemiological studies with conflicting results. This meta-analysis was therefore employed to further investigate the above issue.Methods: The observational studies on the associations of dietary and circulating (serum and plasma) vitamin C levels with MetS were searched in the PubMed, Web of Science, and Embase database up to April 2021. The pooled relative risk (RR) of MetS for the highest vs. lowest dietary and circulating vitamin C levels and the standard mean difference (SMD) of dietary and circulating vitamin C levels for MetS vs. control subjects were calculated, respectively.Results: A total of 28 observational studies were identified in this meta-analysis. Specifically, 23 studies were related to the dietary vitamin C level. The overall multivariable-adjusted RR demonstrated that the dietary vitamin C level was inversely associated with MetS (RR = 0.93, 95% CI: 0.88–0.97; P = 0.003). Moreover, the overall combined SMD showed that the dietary vitamin C level in MetS was lower than that in control subjects (SMD = −0.04, 95% CI: −0.08 to −0.01; P = 0.024). With regard to the circulating vitamin C level, 11 studies were included. The overall multivariable-adjusted RR demonstrated that the circulating vitamin C level was inversely associated with MetS (RR = 0.60, 95% CI: 0.49–0.74; P < 0.001). In addition, the overall combined SMD showed that the circulating vitamin C level in MetS was lower than that in control subjects (SMD=-0.82, 95%CI: −1.24 to −0.40; P < 0.001).Conclusions: Current evidence suggests that both dietary and circulating vitamin C level is inversely associated with MetS. However, due to the limitation of the available evidence, more well-designed prospective studies are still needed.


Author(s):  
Sir Peter Gluckman ◽  
Mark Hanson ◽  
Chong Yap Seng ◽  
Anne Bardsley

Advice for pregnant women on food avoidance, dangerous exposures, and inappropriate behaviours abounds on the internet and through various information sources. This chapter reviews the evidence base for such advice and clarifies issues where common advice is not supported by credible data. Foods containing potential teratogens, mutagens, or toxicants that need consideration include liver (high vitamin A), some herbal teas, contaminated grains, predatory fish, caffeine-containing foods, and various sources of foodborne infections. Exposure to environmental toxicants such as lead, pesticides, herbicides, polycyclic aromatic hydrocarbons, bisphenol-A, and other endocrine-disrupting chemicals should be avoided, as should alcohol consumption and cigarette smoking. Restrictive diets and unusual dietary cravings (pica) need to be properly managed. Evidence for harm from personal care products is generally weak, but pregnant women may choose to avoid some unnecessary exposures.


Sign in / Sign up

Export Citation Format

Share Document