scholarly journals Temporal and Spatial Analyses of the Landscape Pattern of Wuhan City Based on Remote Sensing Images

2018 ◽  
Vol 7 (9) ◽  
pp. 340 ◽  
Author(s):  
Jianjun Lv ◽  
Teng Ma ◽  
Zhiwen Dong ◽  
Yao Yao ◽  
Zehao Yuan

With the acceleration of the process of building a national-level central city in Wuhan, the landscape pattern of the city has undergone tremendous changes. In this paper, remote images are classified through the neural network classification method, based on texture extraction, and the evolution of landscape patterns was quantitatively analyzed, based on the method of moving windows, landscape metrics and urban density calculation, in order to accurately extract landscape types and perform quantitative analyses. Wuhan City is taken as an example. The surface coverage of Wuhan City from 1989 to 2016 is divided into four types: agricultural landscape clusters, forest landscape clusters, water landscape clusters, and urban landscape clusters. It was concluded that, during the study period, the landscape heterogeneity of the entire area in Wuhan has increased, but the central urban area in Wuhan has decreased. The development of urban areas has compacted inwards but expanded outwards. In addition, the western part of Wuhan City developed better than the eastern part.

2022 ◽  
Vol 14 (2) ◽  
pp. 678
Author(s):  
Chong Wei ◽  
Zhiqiang Zhang ◽  
Zhiguo Wang ◽  
Lianhai Cao ◽  
Yichang Wei ◽  
...  

The relationship between water-sediment processes and landscape pattern changes has currently become a research hotspot in low-carbon water and land resource optimization research. The SWAT-VRR model is a distributed hydrological model which better shows the effect of land use landscape change on hydrological processes in the watershed. In this paper, the hydrological models of the Dapoling watershed were built, the runoff and sediment yield from 2006 to 2011 were simulated, and the relationship between landscape patterns and water-sediment yield was analyzed. The results show that the SWAT-VRR model is more accurate and reasonable in describing runoff and sediment yield than the SWAT model. The sub-basins whose soil erosion is relatively light are mostly concentrated in the middle reaches with a slope mainly between 0–5°. The NP, PD, ED, SPIIT, SHEI, and SHDI of the watershed increased slightly, and the COHESION, AI, CONTAG, and LPI showed a certain decrease. The landscape pattern is further fragmented, with the degree of landscape heterogeneity increasing and the connection reducing. The runoff, sediment yield and surface runoff are all extremely significantly negatively correlated with forest, which implies that for more complicated patch shapes of forest which have longer boundaries connecting with the patches of other landscape types, the water and sediment processes are regulated more effectively. Therefore, it can be more productive to carry out research on the optimization of water and soil resources under the constraint of carbon emission based on the SWAT-VRR model.


2018 ◽  
Vol 10 (11) ◽  
pp. 4287 ◽  
Author(s):  
Yantao Xi ◽  
Nguyen Thinh ◽  
Cheng Li

Rapid urbanization has dramatically spurred economic development since the 1980s, especially in China, but has had negative impacts on natural resources since it is an irreversible process. Thus, timely monitoring and quantitative analysis of the changes in land use over time and identification of landscape pattern variation related to growth modes in different periods are essential. This study aimed to inspect spatiotemporal characteristics of landscape pattern responses to land use changes in Xuzhou, China durfing the period of 1985–2015. In this context, we propose a new spectral index, called the Normalized Difference Enhanced Urban Index (NDEUI), which combines Nighttime light from the Defense Meteorological Satellite Program/Operational Linescan System with annual maximum Enhanced Vegetation Index to reduce the detection confusion between urban areas and barren land. The NDEUI-assisted random forests algorithm was implemented to obtain the land use/land cover maps of Xuzhou in 1985, 1995, 2005, and 2015, respectively. Four different periods (1985–1995, 1995–2005, 2005–2015, and 1985–2015) were chosen for the change analysis of land use and landscape patterns. The results indicate that the urban area has increased by about 30.65%, 10.54%, 68.77%, and 143.75% during the four periods at the main expense of agricultural land, respectively. The spatial trend maps revealed that continuous transition from other land use types into urban land has occurred in a dual-core development mode throughout the urbanization process. We quantified the patch complexity, aggregation, connectivity, and diversity of the landscape, employing a number of landscape metrics to represent the changes in landscape patterns at both the class and landscape levels. The results show that with respect to the four aspects of landscape patterns, there were considerable differences among the four years, mainly owing to the increasing dominance of urbanized land. Spatiotemporal variation in landscape patterns was examined based on 900 × 900 m sub-grids. Combined with the land use changes and spatiotemporal variations in landscape patterns, urban growth mainly occurred in a leapfrog mode along both sides of the roads during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period of 1995 to 2005, and the edge-expansion and leapfrog modes coexisted in the period from 2005 to 2015. The high value spatiotemporal information generated using remote sensing and geographic information system in this study could assist urban planners and policymakers to better understand urban dynamics and evaluate their spatiotemporal and environmental impacts at the local level to enable sustainable urban planning in the future.


2020 ◽  
Vol 47 (8) ◽  
pp. 1361-1379
Author(s):  
Chao Xu ◽  
Dagmar Haase ◽  
Meirong Su ◽  
Yutao Wang ◽  
Stephan Pauleit

In the context of rapid urbanization, it remains unclear how urban landscape patterns shift under different urban dynamics, in particular taking different influencing factors of urban dynamics into consideration. In the present study, three key influencing factors were considered, namely, housing demand, spatial structure, and growth form. On this basis, multiple urban dynamic scenarios were constructed and then calculated using either an autologistic regression–Markov chain–based cellular automata model or an integer programming-based urban green space optimization model. A battery of landscape metrics was employed to characterize and quantitatively assess the landscape pattern changes, among which the redundancy was pre-tested and reduced using principal component analysis. The case study of the Munich region, a fast-growing urban region in southern Germany, demonstrated that the changes of the patch complexity index and the landscape aggregation index were largely similar at sub- and regional scales. Specifically, low housing demand, monocentric and compact growth scenarios showed higher levels of patch complexity but lower levels of landscape aggregation, compared to high housing demand, polycentric and sprawl growth scenarios, respectively. In contrast, the changes in the landscape diversity index under different scenarios showed contrasting trends between different sub-regional zones. The findings of this study provide planners and policymakers with a more in-depth understanding of urban landscape pattern changes under different urban planning strategies and its implications for landscape functions and services.


2018 ◽  
Vol 144 (2) ◽  
pp. 05018009 ◽  
Author(s):  
Chaohui Yin ◽  
Yanfang Liu ◽  
Xiaojian Wei ◽  
Weiqiang Chen

2012 ◽  
Vol 209-211 ◽  
pp. 337-340
Author(s):  
Bin Xun ◽  
De Yong Yu ◽  
Yu Peng Liu

urbanization, land use, landscape pattern, landscape sustainability, Shenzhen Abstract. Urbanization has been a universal and irresistible trend across the world. Quantifying urban landscape pattern changes can provide detailed information to understand the urbanization process and to operationalize landscape sustainability. Combining the remotely sensed images and landscape metrics, we analyze the land use structure and landscape dynamics in a typical region of rapid urbanization in China—Shenzhen during the period of 1980-2010. The results showed that the dominant semi-natural and agricultural landscape has been fundamentally converted into the human-induced landscape. At the landscape level, the signatures of landscape dynamics exhibited a coalescence-diffusion-coalescence pattern. At the class level, the degree of fragmentation and shape complexity of four main land use types substantially increased.


2011 ◽  
Vol 368-373 ◽  
pp. 1724-1731
Author(s):  
Ming Hua Huang ◽  
Yang Wang ◽  
Xiao Nan Shi

The author’s observation on the new urban form of Ankang city grounded on the landscape pattern by analyzing and evaluating the present conditions of land resources, historic cultural attractions, and natural landscape from ecological perspective, finding out the problems in the current construction of urban landscape environment with consideration on local special landscape theme. Besides, the authors emphasized and constructed the landscape patterns at master planning level by layout of city green corridor, preservation of the wetland as the urban corn and improvement of the urban green space system in combination of history, culture and natural environment, urban space and urban spirit, as well as history and future construction.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Dikman Maheng ◽  
Assela Pathirana ◽  
Chris Zevenbergen

Urbanization is changing land use–land cover (LULC) transforming green spaces (GS) and bodies of water into built-up areas. LULC change is affecting ecosystem services (ES) in urban areas, such as by decreasing of the water retention capacity, the urban temperature regulation capacity and the carbon sequestration. The relation between LULC change and ES is still poorly examined and quantified using actual field data. In most ES studies, GS is perceived as lumped areas instead of distributed areas, implicitly ignoring landscape patterns (LP), such as connectivity and aggregation. This preliminary study is one of the first to provide quantitative evidence of the influence of landscape pattern changes on a selection of urban ecosystem services in a megacity as Jakarta, Indonesia. The impact of urbanization on the spatiotemporal changes of ES has been identified by considering connectivity and aggregation of GS. It reveals that LP changes have significantly decreased carbon sequestration, temperature regulation, and runoff regulation by 10.4, 12.4, and 11.5%, respectively. This indicates that the impact of GS on ES is not only determined by its area, but also by its LP. Further detailed studies will be needed to validate these results.


2021 ◽  
Vol 300 ◽  
pp. 02015
Author(s):  
Linlu Tian ◽  
Jiajin Wu ◽  
Minqing Li ◽  
Chunwei Xia ◽  
Jianpeng Cao ◽  
...  

Taking the Dadu River Basin in the Danba area of Ganzi Prefecture, Sichuan Province as the research area, based on the 2013 and 2016 Landsat8 remote sensing images, the temperature vegetation drought index (TVDI) method is used to divide the Dadu River dry valley into 6 arid gradient regions. Using ArcGIS10.5 software and Fragstats4.2 software to calculate the landscape pattern index of different arid gradient areas in different years, combined with the survey results of agricultural policies, development models, and agricultural landscape patterns in key regions, analyze the evolution of agricultural landscape patterns under different drought gradients. The results show that, except for other forestlands, the degree of landscape fragmentation is decreasing year by year on the gradient of light and moderate drought, and the degree of spatial heterogeneity is higher. On the gradient of extreme drought, the degree of landscape fragmentation is higher, and the degree of spatial heterogeneity is lower.


2019 ◽  
Vol 11 (23) ◽  
pp. 2810 ◽  
Author(s):  
Youshui Zhang ◽  
Xiaoqin Wang ◽  
Heiko Balzter ◽  
Bingwen Qiu ◽  
Jingyuan Cheng

Urban expansion results in landscape pattern changes and associated changes in land surface temperature (LST) intensity. Spatial patterns of urban LST are affected by urban landscape pattern changes and seasonal variations. Instead of using LST change data, this study analysed the variation of LST aggregation which was evaluated by hotspot analysis to measure the spatial dependence for each LST pixel, indicating the relative magnitudes of the LST values in the neighbourhood of the LST pixel and the area proportion of the hotspot area to gain new insights into the thermal effects of increasing impervious surface area (ISA) caused by urbanization in Fuzhou, China. The spatio-temporal relationship between urban landscape patterns, hotspot locations reflecting urban land cover change in space and the thermal environment were analysed in different sectors. The linear spectral unmixing method of fully constrained least squares (FCLS) was used to unmix the bi-temporal Landsat TM/OLI imagery to derive subpixel ISA and the accuracy of the percent ISA was assessed. Then, a minimum change threshold was chosen to remove random noise, and the change of ISA between 2000 and 2016 was analysed. The urban area was divided into three circular consecutive urban zones in the cardinal directions from the city centre and each circular zone was further divided into eight segments; thus, a total of 24 spatial sectors were derived. The LST aggregation was analysed in different directions and urban segments and hotspot density was further calculated based on area proportion of hotspot areas in each sector. Finally, variations of mean normalized LST (NLST), area proportion of ISA, area proportion of ISA with high LST, and area proportion of hotspot area were quantified for all sectors for 2000 and 2016. The four levels of hotspot density were classified for all urban sectors by proportional ranges of 0%–25%, 25%–50%, 50%–75% and 75%–100% for low-, medium-, sub-high, and high density, and the spatial dynamics of hotspot density between the two dates showed that urbanization mainly dominated in sectors south–southeast 2 (SSE2), south–southwest 2 (SSW2), west–southwest 2 (WSW2), west–northwest 2 (WNW2), north–southwest 2 (NSW2), south–southeast 3 (SSE3) and south–southwest 3 (SSW3). This paper suggests a methodology for characterizing the urban thermal environment and a scientific basis for sustainable urban development.


Author(s):  
Miao Yang ◽  
Jiaguo Gong ◽  
Yong Zhao ◽  
Hao Wang ◽  
Cuiping Zhao ◽  
...  

Wetland landscape patterns are the result of various ecological and hydrological processes. Based on the land use landscape types from 1980 to 2017, a transfer matrix, landscape pattern analysis index, and principal component analysis were used to analyze the landscape pattern evolution in the Xiong’an New Area of China, which has a large area with a lake and river wetlands. The results showed that the wetland area has changed greatly since 2000 and the beach land has decreased greatly, while the area of the lake and river wetlands has increased slightly. Beach land was the dominant landscape type of the wetland. The dominant degree of the wetland landscape showed a slightly decreasing trend, and the patches tended to be scattered. The shape complexity of the ponds was the lowest, while that of rivers was the highest. The fragmentation degree of the wetland patches increased, the proportion of landscape types tended to be equalized, and the landscape heterogeneity increased. The leading factors of the wetland landscape change can be summarized as socioeconomic, meteorological, and hydrological processes, with a cumulative contribution rate of 85.3%, among which socioeconomic development was the most important factor. The results have important guiding significance for the ecological restoration and management of wetlands in the Xiong’an New Area and other wetland ecosystems with rivers and lakes.


Sign in / Sign up

Export Citation Format

Share Document