scholarly journals Fusarium graminearum ATP-Binding Cassette Transporter Gene FgABCC9 Is Required for Its Transportation of Salicylic Acid, Fungicide Resistance, Mycelial Growth and Pathogenicity towards Wheat

2018 ◽  
Vol 19 (8) ◽  
pp. 2351 ◽  
Author(s):  
Peng-Fei Qi ◽  
Ya-Zhou Zhang ◽  
Cai-Hong Liu ◽  
Jing Zhu ◽  
Qing Chen ◽  
...  

ATP-binding cassette (ABC) transporters hydrolyze ATP to transport a wide range of substrates. Fusarium graminearum is a major causal agent of Fusarium head blight, which is a severe disease in wheat worldwide. FgABCC9 (FG05_07325) encodes an ABC-C (ABC transporter family C) transporter in F. graminearum, which was highly expressed during the infection in wheat and was up-regulated by the plant defense hormone salicylic acid (SA) and the fungicide tebuconazole. The predicted tertiary structure of the FgABCC9 protein was consistent with the schematic of the ABC exporter. Deletion of FgABCC9 resulted in decreased mycelial growth, increased sensitivity to SA and tebuconazole, reduced accumulation of deoxynivalenol (DON), and less pathogenicity towards wheat. Re-introduction of a functional FgABCC9 gene into ΔFgABCC9 recovered the phenotypes of the wild type strain. Transgenic expression of FgABCC9 in Arabidopsis thaliana increased the accumulation of SA in its leaves without activating SA signaling, which suggests that FgABCC9 functions as an SA exporter. Taken together, FgABCC9 encodes an ABC exporter, which is critical for fungal exportation of SA, response to tebuconazole, mycelial growth, and pathogenicity towards wheat.

1995 ◽  
Vol 15 (12) ◽  
pp. 6875-6883 ◽  
Author(s):  
D J Katzmann ◽  
T C Hallstrom ◽  
M Voet ◽  
W Wysock ◽  
J Golin ◽  
...  

Semidominant mutations in the PDR1 or PDR3 gene lead to elevated resistance to cycloheximide and oligomycin. PDR1 and PDR3 have been demonstrated to encode zinc cluster transcription factors. Cycloheximide resistance mediated by PDR1 and PDR3 requires the presence of the PDR5 membrane transporter-encoding gene. However, PDR5 is not required for oligomycin resistance. Here, we isolated a gene that is necessary for PDR1- and PDR3-mediated oligomycin resistance. This locus, designated YOR1, causes a dramatic elevation in oligomycin resistance when present in multiple copies. A yor1 strain exhibits oligomycin hypersensitivity relative to an isogenic wild-type strain. In addition, loss of the YOR1 gene blocks the elevation in oligomycin resistance normally conferred by mutant forms of PDR1 or PDR3. The YOR1 gene product is predicted to be a member of the ATP-binding cassette transporter family of membrane proteins. Computer alignment indicates that Yor1p shows striking sequence similarity with multidrug resistance-associated protein, Saccharomyces cerevisiae Ycf1p, and the cystic fibrosis transmembrane conductance regulator. Use of a YOR1-lacZ fusion gene indicates that YOR1 expression is responsive to PDR1 and PDR3. While PDR5 expression is strictly dependent on the presence of PDR1 or PDR3, control of YOR1 expression has a significant PDR1/PDR3-independent component. Taken together, these data indicate that YOR1 provides the link between transcriptional regulation by PDR1 and PDR3 and oligomycin resistance of yeast cells.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Yabing Duan ◽  
Xian Tao ◽  
Huahua Zhao ◽  
Xuemei Xiao ◽  
Meixia Li ◽  
...  

Fusarium graminearum species complex (FGSC), causing Fusarium head blight (FHB) of wheat, has species-specific geographical distributions in wheat-growing regions. In recent years, benzimidazole resistance of FHB pathogens has been largely widespread in China. Although the demethylation inhibitor fungicide metconazole has been used for FHB control in some countries, no information about metconazole sensitivity of Chinese FHB pathogen populations and efficacy of metconazole in FHB control in China is available. In this study, the sensitivity of FGSC to metconazole was measured with 32 carbendazim-sensitive strains and 35 carbendazim-resistant strains based on mycelial growth. The 50% effective concentration values of 67 strains were normally distributed and ranged from 0.0209 to 0.0838 μg ml−1, with a mean of 0.0481 ± 0.0134 μg ml−1. No significant difference in metconazole sensitivity was observed between carbendazim-sensitive and -resistant populations. An interactive effect of metconazole and phenamacril, a novel cyanoacrilate fungicide approved in China against Fusarium spp., in inhibiting mycelial growth showed an additive interaction at different ratios. Furthermore, field trials to evaluate the effect of metconazole and metconazole + phenamacril treatments in FHB control, deoxynivalenol (DON) production, and grain yields were performed. Compared with the fungicides carbendazim and phenamacril currently used in China, metconazole exhibits a better efficacy for FHB control, DON production, and grain yields, and dramatically reduces use dosages of chemical compounds in the field. The mixture of metconazole and phenamacril at ratios of 2:3 and 1:2 showed the greatest efficacy for FHB control, DON production, and grain yields among all the fungicide treatments but its use dosages were higher in comparison with metconazole alone. In addition, FHB control, grain yields, and DON levels were significantly correlated with each other, showing that visual disease indices can be used as an indicator of grain yields and DON contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after metconazole and phenamacril alone and the mixture of metconazole and phenamacril applications, indicating that metconazole and a mixture of metconazole and phenamacril can be used for carbendazim resistance management of FHB in wheat. Overall, the findings of this study provide important data for resistance management of FHB and reducing DON contamination in wheat grains.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Folukemi Adedipe ◽  
Nathaniel Grubbs ◽  
Brad Coates ◽  
Brian Wiegmman ◽  
Marcé Lorenzen

Abstract Background The western corn rootworm, Diabrotica virgifera virgifera, is a pervasive pest of maize in North America and Europe, which has adapted to current pest management strategies. In advance of an assembled and annotated D. v. virgifera genome, we developed transcriptomic resources to use in identifying candidate genes likely to be involved in the evolution of resistance, starting with members of the ATP-binding cassette (ABC) transporter family. Results In this study, 65 putative D. v. virgifera ABC (DvvABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the DvvABC transporters into eight subfamilies (A to H). To supplement our sequence data with functional analysis, we identified orthologs of Tribolium castaneum ABC genes which had previously been shown to exhibit overt RNA interference (RNAi) phenotypes. We identified eight such D. v. virgifera genes, and found that they were functionally similar to their T. castaneum counterparts. Interestingly, depletion of DvvABCB_39715 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes, demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics. Conclusions By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera. Moreover, we have identified 65 members of the ABC transporter family and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.


2017 ◽  
Author(s):  
C.P. Nicolli ◽  
F.J. Machado ◽  
P. Spolti ◽  
E.M. Del Ponte

AbstractFusarium graminearum of the 15-acetyl(A)deoxynivalenol(D0N) chemotype is the main cause of Fusarium head blight (FHB) of wheat in south of Brazil. However, 3-ADON and nivalenol(NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum) and NIV (F. meridionale and F. cortaderiae). These included: perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity towards a susceptible and a moderately resistant cultivar and sensitivity to tebuconazole. The most important trait favoring F. graminearum was its 2x higher sexual fertility (> 40% PPI = perithecia production index) than the other species (< 30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum which had the only strain with EC50 > 1 ppm. In the pathogenicity assays, the DON-producers were generally more aggressive (1.5 to 2x higher final severity) towards the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cv., respectively. There was significant variation among strains of a same species with regards asexual fertility (mycelial growth, macroconidia production and germination), which suggest a strain-rather than a species-specific differences. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yi Lou ◽  
Jing Zhang ◽  
Guanghui Wang ◽  
Wenqin Fang ◽  
Shumin Wang ◽  
...  

Fusarium head blight (FHB), caused predominantly by Fusarium graminearum , is an economically devastating disease of a wide range of cereal crops. Our previous study identified F. graminearum Vps17, Vps5, Snx41, and Snx4 as PX domain-containing proteins that were involved in membrane trafficking mediating the fungal development and pathogenicity, but the identity and biological roles of the remaining members of this protein family remain unknown in this model phytopathogen.


2021 ◽  
Vol 22 (16) ◽  
pp. 8497
Author(s):  
Qing Chen ◽  
Lu Lei ◽  
Caihong Liu ◽  
Yazhou Zhang ◽  
Qiang Xu ◽  
...  

Wheat is a major staple food crop worldwide, due to its total yield and unique processing quality. Its grain yield and quality are threatened by Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum. Salicylic acid (SA) has a strong and toxic effect on F. graminearum and is a hopeful target for sustainable control of FHB. F. graminearum is capable of efficientdealing with SA stress. However, the underlying mechanisms remain unclear. Here, we characterized FgMFS1 (FGSG_03725), a major facilitator superfamily (MFS) transporter gene in F. graminearum. FgMFS1 was highly expressed during infection and was upregulated by SA. The predicted three-dimensional structure of the FgMFS1 protein was consistent with the schematic for the antiporter. The subcellular localization experiment indicated that FgMFS1 was usually expressed in the vacuole of hyphae, but was alternatively distributed in the cell membrane under SA treatment, indicating an element of F. graminearum in response to SA. ΔFgMFS1 (loss of function mutant of FgMFS1) showed enhanced sensitivity to SA, less pathogenicity towards wheat, and reduced DON production under SA stress. Re-introduction of a functional FgMFS1 gene into ∆FgMFS1 recovered the mutant phenotypes. Wheat spikes inoculated with ΔFgMFS1 accumulated more SA when compared to those inoculated with the wild-type strain. Ecotopic expression of FgMFS1 in yeast enhanced its tolerance to SA as expected, further demonstrating that FgMFS1 functions as an SA exporter. In conclusion, FgMFS1 encodes an SA exporter in F. graminearum, which is critical for its response to wheat endogenous SA and pathogenicity towards wheat.


2019 ◽  
Vol 20 (6) ◽  
pp. 1409 ◽  
Author(s):  
Qiyi He ◽  
Zhentian Yan ◽  
Fengling Si ◽  
Yong Zhou ◽  
Wenbo Fu ◽  
...  

background: The ATP-binding cassette (ABC) transporters family is one of the largest families of membrane proteins existing in all living organisms. Pyrethroid resistance has become the largest unique obstacle for mosquito control worldwide. ABC transporters are thought to be associated with pyrethroid resistance in some agricultural pests, but little information is known for mosquitoes. Herein, we investigated the diversity, location, characteristics, phylogenetics, and evolution of ABC transporter family of genes in the Anopheles sinensis genome, and identified the ABC transporter genes associated with pyrethroid resistance through expression profiles using RNA-seq and qPCR. Results: 61 ABC transporter genes are identified and divided into eight subfamilies (ABCA-H), located on 22 different scaffolds. Phylogenetic and evolution analyses with ABC transporters of A. gambiae, Drosophila melanogaster, and Homo sapiens suggest that the ABCD, ABCG, and ABCH subfamilies are monophyly, and that the ABCC and ABCG subfamilies have experienced a gene duplication event. Both RNA-seq and qPCR analyses show that the AsABCG28 gene is uniquely significantly upregulated gene in all three field pyrethroid-resistant populations (Anhui, Chongqing, and Yunnan provinces) in comparison with a laboratory-susceptible strain from Jiangsu province. The AsABCG28 is significantly upregulated at 12-h and 24-h after deltamethrin exposure in three-day-old female adults. Conclusion: This study provides the information frame for ABC transporter subfamily of genes, and lays an important basis for the better understanding and further research of ABC transporter function in insecticide toxification. The AsABCG28 gene is associated with pyrethroid detoxification, and it functions at later period in the detoxification process for xenobiotics transportation.


Sign in / Sign up

Export Citation Format

Share Document