scholarly journals Role of Cannabinoids in Obesity

2018 ◽  
Vol 19 (9) ◽  
pp. 2690 ◽  
Author(s):  
Francesca Rossi ◽  
Francesca Punzo ◽  
Giuseppina Umano ◽  
Maura Argenziano ◽  
Emanuele Miraglia Del Giudice

Obesity is an increasing health problem worldwide. Its related comorbidities imply a high cost for the National Health System and diminish a patient’s life quality. Adipose tissue is composed of three types of cells. White adipocytes are involved in fat storage and secretion of hormones. Brown adipocytes are involved in thermogenesis and caloric expenditure. Beige adipocytes are transitional adipocytes that in response to various stimuli can turn from white to brown and could be protective against the obesity, enhancing energy expenditure. The conversion of white in beige adipose tissue is a potential new therapeutic target for obesity. Cannabinoid receptors (CB) regulate thermogenesis, food intake and inflammation. CB1 ablation or inhibition helps reducing body weight and food intake. Stimulation of CB2 limits inflammation and promotes anti-obesity effects by reducing food intake and weight gain. Its genetic ablation results in adiposity development. CB receptors are also responsible for transforming white adipose tissue towards beige or brown adipocytes, therefore their modulation can be considered potential anti-obesity target. CB1 principal localization in central nervous system represents an important limit. Stimulation of CB2, principally localized on peripheral cells instead, should facilitate the anti-obesity effects without exerting remarkable psychotropic activity.

2018 ◽  
Author(s):  
Adilson Guilherme ◽  
David J Pedersen ◽  
Felipe Henriques ◽  
Alexander H. Bedard ◽  
Elizabeth Henchey ◽  
...  

ABSTRACTWhite adipose tissue (WAT) secretes factors to communicate with other metabolic organs to maintain energy homeostasis. We previously reported that perturbation of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) causes expansion of sympathetic neurons within white adipose tissue (WAT) and the appearance of “beige” adipocytes. Here we report evidence that white adipocyte DNL activity is also coupled to neuronal regulation and thermogenesis in brown adipose tissue (BAT). Induced deletion of FASN in all adipocytes in mature mice (iAdFASNKO) enhanced sympathetic innervation and neuronal activity as well as UCP1 expression in both WAT and BAT. In contrast, selective ablation of FASN in brown adipocytes of mice (iUCP1FASNKO) failed to modulate sympathetic innervation and the thermogenic program in BAT. Surprisingly, DNL in brown adipocytes was also dispensable in maintaining euthermia when UCP1FASNKO mice were cold-exposed. These results indicate that DNL in white adipocytes influences long distance signaling to BAT, which can modify BAT sympathetic innervation and expression of genes involved in thermogenesis.


Endocrinology ◽  
2018 ◽  
Vol 159 (7) ◽  
pp. 2545-2553 ◽  
Author(s):  
Carlos Henrique Sponton ◽  
Shingo Kajimura

Abstract Beige adipocytes are an inducible form of thermogenic adipose cells that emerge within the white adipose tissue in response to a variety of environmental stimuli, such as chronic cold acclimation. Similar to brown adipocytes that reside in brown adipose tissue depots, beige adipocytes are also thermogenic; however, beige adipocytes possess unique, distinguishing characteristics in their developmental regulation and biological function. This review highlights recent advances in our understanding of beige adipocytes, focusing on the diverse roles of beige fat in the regulation of energy homeostasis that are independent of the canonical thermogenic pathway via uncoupling protein 1.


1959 ◽  
Vol 197 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Guy Hollifield ◽  
William Parson

Compound A (11-dehydrocorticosterone) pellets implanted subcutaneously produced increased carcass fat and decreased protein in older mice but not in young mice of the DBA strain. The increased carcass fat is not the result of increased food intake or weight gain since it occurs in the face of a decreased food intake and weight loss and is associated with a decrease in spontaneous running activity. Adipose tissue of mice treated with compound A pellet implants has a greater lipid synthesis from C14-labeled acetate than that from cholesterol-treated controls. These findings lend support to the idea that compound A causes increased gluconeogenesis and increased insulin production with a resultant stimulation of fat synthesis by adipose tissue.


2014 ◽  
Vol 92 (7) ◽  
pp. 615-626 ◽  
Author(s):  
Yongguo Li ◽  
David Lasar ◽  
Tobias Fromme ◽  
Martin Klingenspor

Brown fat is a specialized heater organ in eutherian mammals. In contrast to the energy storage function of white adipocytes, brown adipocytes dissipate nutrient energy by uncoupling of mitochondrial oxidative phosphorylation, which depends on uncoupling protein 1 (UCP1). UCP1, as well as UCP2 and UCP3, belong to the family of mitochondrial carriers inserted into the inner mitochondrial membrane for metabolite trafficking between the matrix and the intermembrane space. UCP1 transports protons into the mitochondrial matrix when activated by a rise in free fatty acid levels in the cell. This UCP1-dependant proton leak drives high oxygen consumption rates in the absence of ATP synthesis and dissipates proton motive force as heat. The enormous heating capacity of brown fat is supported by dense vascularization, high rates of tissue perfusion, and high mitochondrial density in brown adipocytes. It has been known for more than 50 years that nonshivering thermogenesis in brown fat serves to maintain body temperature of neonates and small mammals in cold environments, and is used by hibernators for arousal from torpor. It has been speculated that the development of brown fat as a new source for nonshivering thermogenesis provided mammals with a unique advantage for survival in the cold. Indeed brown fat and UCP1 is found in ancient groups of mammals, like the afrotherians and marsupials. In the latter, however, the thermogenic function of UCP1 and brown fat has not been demonstrated as of yet. Notably, orthologs of all three mammalian UCP genes are also present in the genomes of bony fishes and in amphibians. Molecular phylogeny reveals a striking increase in the substitution rate of UCP1 between marsupial and eutherian lineages. At present, it seems that UCP1 only gained thermogenic function in brown adipocytes of eutherian mammals, whereas the function of UCP1 and that of the other UCPs in ectotherms remains to be identified. Evolution of thermogenic function required expression of UCP1 in a brown-adipocyte-like cell equipped with high mitochondrial density embedded in a well-vascularized tissue. Brown-adipocyte-like cells in white adipose tissue, called “brite” (brown-in-white) or “beige” adipocytes, emerge during adipogenesis and in response to cold exposure in anatomically distinct adipose tissue depots of juvenile and adult rodents. These brite adipocytes may resemble the archetypical brown adipocyte in vertebrate evolution. It is therefore of interest to elucidate the molecular mechanisms of brite adipocyte differentiation, study the bioenergetic properties of these cells, and search for the presence of related brown-adipocyte-like cells in nonmammalian vertebrates.


2014 ◽  
Vol 6 (2) ◽  
pp. 65
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: The epidemic of obesity and type 2 diabetes presents a serious challenge to scientific and biomedical communities worldwide. There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function.CONTENT: Adipose tissue, best known for its role in fat storage, can also suppress weight gain and metabolic disease through the action of specialized, heat-producing adipocytes. Brown adipocytes are located in dedicated depots and express constitutively high levels of thermogenic genes, whereas inducible ‘brown-like’ adipocytes, also known as beige cells, develop in white fat in response to various activators. The activities of brown and beige fat cells reduce metabolic disease, including obesity, in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease.SUMMARY: The complexity of adipose tissue presents numerous challenges but also several opportunities for therapeutic intervention. There is persuasive evidence from animal models that enhancement of the function of brown adipocytes, beige adipocytes or both in humans could be very effective for treating type 2 diabetes and obesity. Moreover, there are now an extensive variety of factors and pathways that could potentially be targeted for therapeutic effects. In particular, the discoveries of circulating factors, such as irisin, fibroblast growth factor (FGF)21 and natriuretic peptides, that enhance brown and beige fat function in mice have garnered tremendous interest. Certainly, the next decade will see massive efforts to use beige and brown fat to ameliorate human metabolic disease.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, adipose organ, thermogenesis, energy expenditure


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Umesh D. Wankhade ◽  
Michael Shen ◽  
Hariom Yadav ◽  
Keshari M. Thakali

Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and “beige” adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.


2016 ◽  
Vol 311 (1) ◽  
pp. E260-E268 ◽  
Author(s):  
Sébastien M. Labbé ◽  
Alexandre Caron ◽  
Kanta Chechi ◽  
Mathieu Laplante ◽  
Roger Lecomte ◽  
...  

Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as “beige” adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[18F]deoxyglucose (glucose uptake), fluoro-[18F]thiaheptadecanoic acid (fatty acid uptake), and [11C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.


Author(s):  
Ziye Xu ◽  
Wenjing You ◽  
Jiaqi Liu ◽  
Yizhen Wang ◽  
Tizhong Shan

AbstractThe high prevalence of obesity and its associated metabolic diseases has heightened the importance of understanding control of adipose tissue development and energy metabolism. In mammals, 3 types of adipocytes with different characteristics and origins have been identified: white, brown, and beige. Beige and brown adipocytes contain numerous mitochondria and have the capability to burn energy and counteract obesity, while white adipocytes store energy and are closely associated with metabolic disorders and obesity. Thus, regulation of the development and function of different adipocytes is important for controlling energy balance and combating obesity and related metabolic disorders. Melatonin is a neurohormone, which plays multiple roles in regulating inflammation, blood pressure, insulin actions, and energy metabolism. This article summarizes and discusses the role of melatonin in white, beige, and brown adipocytes, especially in affecting adipogenesis, inducing beige formation or white adipose tissue browning, enhancing brown adipose tissue mass and activities, improving anti-inflammatory and antioxidative effects, regulating adipokine secretion, and preventing body weight gain. Based on the current findings, melatonin is a potential therapeutic agent to control energy metabolism, adipogenesis, fat deposition, adiposity, and related metabolic diseases.


2018 ◽  
Vol 51 (6) ◽  
pp. 2900-2915 ◽  
Author(s):  
Chuanhai Zhang ◽  
Jing Jing Wang ◽  
Xiaoyun He ◽  
Chao Wang ◽  
Boyang Zhang ◽  
...  

Background/Aims: Brown and beige adipocytes are widely recognized as potential therapeutic targets to treat obesity and related metabolic disorders, and the recruitment of brown and beige adipocytes is an essential aspect that requires attention. Although many methods of activating brown adipocytes or generating beige adipocytes have been reported, the limited number and sources are the biggest challenges. The number of white adipocytes is much greater than the number of brown adipocytes, both in human adults and fetuses. Unfortunately, human adult white adipose tissue-derived stem cell (aWAsc) has little beige adipogenic potential. However, the characteristics and beige adipogenic potential of human embryo-derived white adipose stem cells (eWAsc) still need to be investigated. Methods: To analyze the characteristics and functionality of eWAsc, we analyzed the markers of adipose precursor cells by flow cytometry. Then, differentiation and browning/beiging were induced, and the identifying markers were analyzed by real-time PCR and immunoblot. In addition, more in-depth exploration was performed using RNA-SEQ on eWAsc and aWAsc. Results: eWAsc was isolated from human embryonic white adipose tissue, and aWAsc was isolated from adult white adipose tissue by collagenase treatment. eWAsc has extreme advantages in adipogenesis capacity and browning/beiging ability in comparison to aWAsc, indicating that eWAsc may possess some special regulatory factors to promote the generation of functional brown/beige adipocytes. Greater exploration was enabled by RNA-SEQ, revealing a large number of differences at the transcriptional levels, including 1263 differentially expressed genes, 657 down- and 605 upregulated, in eWAsc compared to aWAsc. Pathway analysis revealed enrichment in cell cycle, TGF-β signaling pathway, DNA replication, and Hippo signaling pathways. Interestingly, the expression levels of C/EBPα, FGF1 and FST gene, which are related to the maturation of adipocytes, Hippo signaling pathway and TGF-β signaling pathway, were significantly higher in eWAsc than in aWAsc. These may be potential candidates and possible regulatory targets for recruiting beige adipocytes in human adipose tissue. Conclusion: Overall, we have demonstrated the molecular characteristics and excellent beige adipogenic potential of eWAsc, providing a new reference for studying human adipocytes.


Author(s):  
Hirendra M. Biswas

AbstractBackground:Like other tissues, adrenocorticotropic hormone (ACTH) can produce its effect on brown adipose tissue (BAT). This study was taken to understand the direct effect of ACTH action on thermogenin gene expression and possible relation with α receptors and caffeine with this hormone.Methods:Brown fat precursor cells were isolated from interscapular BAT of young mice and grown in culture. The cells were exposed to norepinephrine (NE) and other agents. Total RNA was isolated after harvesting the cells, and northern blot analysis was performed. Hybridization was performed with nick translated cDNA probes. Filters were exposed to film, and results were evaluated by scanning. Cyclic adenosine monophosphate (cAMP) was measured by using Amersham assay kit.Results:ACTH stimulates thermogenin gene expression in brown adipocytes. Initiation and maximum stimulations are observed with 0.01 μM and 10 μM (about 45%) of ACTH, respectively, in comparison to 0.1 μM of NE. Maximum response of cAMP is also observed with 10 μM of ACTH (about 64%). Studies with cirazoline and ACTH show thatConclusions:ACTH stimulates thermogenin gene expression in cultured brown adipocytes. The complex interrelationship of ACTH with cirazoline indicates the possibility of relation between the activity of ACTH and α receptors in brown adipocytes. Further stimulation of cAMP generation and thermogenin gene expression is possible with ACTH in conjugation with caffeine and RO 20-1724.


Sign in / Sign up

Export Citation Format

Share Document