scholarly journals The Effectiveness of Vitamin E Treatment in Alzheimer’s Disease

2019 ◽  
Vol 20 (4) ◽  
pp. 879 ◽  
Author(s):  
Ana Lloret ◽  
Daniel Esteve ◽  
Paloma Monllor ◽  
Ana Cervera-Ferri ◽  
Angeles Lloret

Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.

2009 ◽  
Vol 102 (3) ◽  
pp. 398-406 ◽  
Author(s):  
Sonja Gaedicke ◽  
Xiangnan Zhang ◽  
Patricia Huebbe ◽  
Christine Boesch-Saadatmandi ◽  
Yijia Lou ◽  
...  

Oxidative stress is one of the major pathological features of Alzheimer's disease (AD). Here, we investigated whether dietary vitamin E (VE) depletion may induce adverse effects and supplementation with α-tocopherol (αT) may result in beneficial effects on redox status and the regulation of genes relevant in the pathogenesis of AD in healthy rats. Three groups of eight male rats each were fed diets with deficient ( < 1 mg αT equivalents/kg diet), marginal (9 mg αT equivalents/kg diet) or sufficient (18 mg αT equivalents/kg diet) concentrations of natural-source VE for 6 months; a fourth group was fed the VE-sufficient diet fortified with αT (total VE, 146 mg αT equivalents/kg diet). Feeding of the experimental diets dose dependently altered αT concentrations in the cortex and plasma. No significant changes in F2-isoprostane concentrations, activities of antioxidative enzymes (total superoxide dismutase, Se-dependent glutathione peroxidase) and concentrations of glutathione or the expression of AD-relevant genes were observed. In this non-AD model, depletion of VE did not induce adverse effects and supplementation of αT did not induce positive effects on the parameters related to the progression of AD.


1995 ◽  
Vol 8 (1) ◽  
pp. 3-13 ◽  
Author(s):  
E. Scherder ◽  
A. Bouma ◽  
L. Steen

In previous studies beneficial effects of peripheral electrical or tactile nerve stimulation were observed on memory and affective behaviour in patients with probable Alzheimer's disease. In the present study, it was investigated whether electrical and tactile stimulation applied simultaneously to Alzheimer patients would exceed the effects which were observed following treatment by each type of stimulation separately. Our data reveal that the simultaneous application of the two types of stimulation had a beneficial effect on non-verbal and verbal long-term recognition memory. In addition, patients who were treated participated more in activities of daily living, and were more interested in social contacts. In spite of these positive results, comparisons with those of previous studies suggest that a combination of electrical and tactile stimulation does not yield more effects than application of each type of stimulation separately.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3011
Author(s):  
Ines ELBini-Dhouib ◽  
Raoudha Doghri ◽  
Amenallah Ellefi ◽  
Imen Degrach ◽  
Najet Srairi-Abid ◽  
...  

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Despite research efforts, currently there are no effective pharmacotherapeutic options for the prevention and treatment of AD. Recently, numerous studies highlighted the beneficial effects of curcumin (CUR), a natural polyphenol, in the neuroprotection. Especially, its dual antioxidant and anti-inflammatory properties attracted the interest of researchers. In fact, besides its antioxidant and anti-inflammatory properties, this biomolecule is not degraded in the intestinal tract. Additionally, CUR is able to cross the blood–brain barrier and could therefore to be used to treat neurodegenerative pathologies associated with oxidative stress, inflammation and apoptosis. The present study aimed to assess the ability of CUR to induce neuronal protective and/or recovery effects on a rat model of neurotoxicity induced by aluminum chloride (AlCl3), which mimics the sporadic form of Alzheimer’s disease. Our results showed that treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats. Additionally, histopathological analysis of hippocampus revealed the potential of CUR in decreasing the hallmarks in the AlCl3-induced AD. We also showed that CUR post-treatment significantly improved the behavioral, oxidative stress and inflammation in AlCl3-exposed rats. Taken together, our data presented CUR as a nutraceutical potential through its protective effects that are more interesting than recovery ones in sporadic model of AD.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


Author(s):  
Zeba Firdaus ◽  
Tryambak Deo Singh

: Alzheimer’s disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically it is described by cognitive impairment, and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of the AD in recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities such as anti-amyloidogenic, anticholinesterase, and antioxidant. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.


2019 ◽  
Vol 16 (11) ◽  
pp. 1007-1017 ◽  
Author(s):  
James G. McLarnon

A combinatorial cocktail approach is suggested as a rationale intervention to attenuate chronic inflammation and confer neuroprotection in Alzheimer’s disease (AD). The requirement for an assemblage of pharmacological compounds follows from the host of pro-inflammatory pathways and mechanisms present in activated microglia in the disease process. This article suggests a starting point using four compounds which present some differential in anti-inflammatory targets and actions but a commonality in showing a finite permeability through Blood-brain Barrier (BBB). A basis for firstchoice compounds demonstrated neuroprotection in animal models (thalidomide and minocycline), clinical trial data showing some slowing in the progression of pathology in AD brain (ibuprofen) and indirect evidence for putative efficacy in blocking oxidative damage and chemotactic response mediated by activated microglia (dapsone). It is emphasized that a number of candidate compounds, other than ones suggested here, could be considered as components of the cocktail approach and would be expected to be examined in subsequent work. In this case, systematic testing in AD animal models is required to rigorously examine the efficacy of first-choice compounds and replace ones showing weaker effects. This protocol represents a practical approach to optimize the reduction of microglial-mediated chronic inflammation in AD pathology. Subsequent work would incorporate the anti-inflammatory cocktail delivery as an adjunctive treatment with ones independent of inflammation as an overall preventive strategy to slow the progression of AD.


2020 ◽  
Vol 20 (13) ◽  
pp. 1214-1234 ◽  
Author(s):  
Md. Tanvir Kabir ◽  
Md. Sahab Uddin ◽  
Bijo Mathew ◽  
Pankoj Kumar Das ◽  
Asma Perveen ◽  
...  

Background: Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. Objective: In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. Summary: Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine’s immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. Conclusion: Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.


Sign in / Sign up

Export Citation Format

Share Document