scholarly journals Genome-Wide Characterization of NBS-Encoding Genes in Watermelon and Their Potential Association with Gummy Stem Blight Resistance

2019 ◽  
Vol 20 (4) ◽  
pp. 902 ◽  
Author(s):  
Md Hassan ◽  
Md Rahim ◽  
Hee-Jeong Jung ◽  
Jong-In Park ◽  
Hoy-Taek Kim ◽  
...  

Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.

Author(s):  
Winnie Gimode ◽  
Kan Bao ◽  
Zhangjun Fei ◽  
Cecilia McGregor

Abstract Key message We identified QTLs associated with gummy stem blight resistance in an interspecific F2:3Citrullus population and developed marker assays for selection of the loci in watermelon. Abstract Gummy stem blight (GSB), caused by three Stagonosporopsis spp., is a devastating fungal disease of watermelon (Citrullus lanatus) and other cucurbits that can lead to severe yield losses. Currently, no commercial cultivars with genetic resistance to GSB in the field have been reported. Utilizing GSB-resistant cultivars would reduce yield losses, decrease the high cost of disease control, and diminish hazards resulting from frequent fungicide application. The objective of this study was to identify quantitative trait loci (QTLs) associated with GSB resistance in an F2:3 interspecific Citrullus mapping population (N = 178), derived from a cross between Crimson Sweet (C. lanatus) and GSB-resistant PI 482276 (C. amarus). The population was phenotyped by inoculating seedlings with Stagonosporopsis citrulli 12178A in the greenhouse in two separate experiments, each with three replications. We identified three QTLs (ClGSB3.1, ClGSB5.1 and ClGSB7.1) associated with GSB resistance, explaining between 6.4 and 21.1% of the phenotypic variation. The genes underlying ClGSB5.1 includes an NBS-LRR gene (ClCG05G019540) previously identified as a candidate gene for GSB resistance in watermelon. Locus ClGSB7.1 accounted for the highest phenotypic variation and harbors twenty-two candidate genes associated with disease resistance. Among them is ClCG07G013230, encoding an Avr9/Cf-9 rapidly elicited disease resistance protein, which contains a non-synonymous point mutation in the DUF761 domain that was significantly associated with GSB resistance. High throughput markers were developed for selection of ClGSB5.1 and ClGSB7.1. Our findings will facilitate the use of molecular markers for efficient introgression of the resistance loci and development of GSB-resistant watermelon cultivars.


2020 ◽  
Author(s):  
Md. Rafiqul Islam ◽  
Mohammad Rashed Hossain ◽  
Denison Michael Immanuel Jesse ◽  
Hee-Jeong Jung ◽  
Hoy-Taek Kim ◽  
...  

Abstract Background: Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB.Results: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. Conclusion: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.


2020 ◽  
Author(s):  
Md. Rafiqul Islam ◽  
Mohammad Rashed Hossain ◽  
Denison Michael Immanuel Jesse ◽  
Hee-Jeong Jung ◽  
Hoy-Taek Kim ◽  
...  

Abstract Background Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli , results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance ( R )-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R -genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. Results We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R -genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli via qRT-PCR. Six R -genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. Conclusion We identified six putative candidate R -genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 726 ◽  
Author(s):  
Hasan Mehraj ◽  
Ayasha Akter ◽  
Naomi Miyaji ◽  
Junji Miyazaki ◽  
Daniel J. Shea ◽  
...  

The genus Brassica contains important vegetable crops, which serve as a source of oil seed, condiments, and forages. However, their production is hampered by various diseases such as clubroot and Fusarium wilt, especially in Brassica vegetables. Soil-borne diseases are difficult to manage by traditional methods. Host resistance is an important tool for minimizing disease and many types of resistance (R) genes have been identified. More than 20 major clubroot (CR) disease-related loci have been identified in Brassica vegetables and several CR-resistant genes have been isolated by map-based cloning. Fusarium wilt resistant genes in Brassica vegetables have also been isolated. These isolated R genes encode the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rice-repeat (TIR-NBS-LRR) protein. DNA markers that are linked with disease resistance allele have been successfully applied to improve disease resistance through marker-assisted selection (MAS). In this review, we focused on the recent status of identifying clubroot and Fusarium wilt R genes and the feasibility of using MAS for developing disease resistance cultivars in Brassica vegetables.


2009 ◽  
Vol 27 (3) ◽  
pp. 330-334 ◽  
Author(s):  
Gil R dos Santos ◽  
Manoel D de Castro Neto ◽  
Hudson SM de Almeida ◽  
Leandro N Ramos ◽  
Renato A Sarmento ◽  
...  

Nitrogen fertilization is an important step for watermelon (Citrullus lanatus) production due to its influence over yield, fruit quality, and disease severity. Currently, the gummy stem blight (Didymella bryoniae) and the downy mildew (Pseudoperonospora cubensis) can be taken as the most important watermelon diseases, since they impose severe impairment to the crop. Furthermore, studies focusing on plant responses to nitrogen fertilization regarding fruit yield and quality, and disease resistance are rare. Hence, the present study aimed at evaluating the effect of nitrogen doses on fruit yield and quality, and on disease prevalence in watermelon. Two experiments were carried out at the Universidade Federal de Tocantins, employing sprinkler irrigation, in an area previously used to grow watermelon. The experimental design was blocks at random, with five treatments (N doses, applied twice as side-dressing, in kg ha-1, as follows: T1= control treatment without N, T2= 20, T3= 40, T4= 80, and T5= 120), and four replications. Urea (45% N) was used as the N source. In the first assay, the highest fruit yield and average weight were observed when 40 kg ha-1 of N were applied. The highest severity of the gummy stem blight was observed when the highest nitrogen doses were applied (80 and 120 kg ha-1). In the second assay, the highest severity levels of the gummy stem blight, as well as of mildew, were observed again when N doses were the highest (80 and 120 kg ha-1). The lowest severity levels for both diseases were observed in the control treatment.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 815-822 ◽  
Author(s):  
Anthony P. Keinath

To prevent yield reductions from gummy stem blight, fungicides often must be applied to watermelon (Citrullus lanatus) and muskmelon (Cucumis melo). Didymella bryoniae, the ascomycete fungus that causes gummy stem blight, is resistant to thiophanate-methyl, quinone-outside inhibitors (QoI), boscalid, and penthiopyrad. In place of these fungicides, premixtures of cyprodinil and fludioxonil (Switch 62.5WG) or cyprodinil and difenoconazole (Inspire Super 2.82SC) are used. The objectives of this study were to examine baseline isolates of D. bryoniae for sensitivity to cyprodinil and fludioxonil and to determine the efficacy of cyprodinil-fludioxonil and cyprodinil-difenoconazole against isolates resistant to QoI fungicides and boscalid. Colony diameters of 146 isolates of D. bryoniae collected in South Carolina and other U.S. states prior to 2008 were measured on glucose minimal medium amended with cyprodinil or fludioxonil. Mean effective concentration values that reduced relative colony diameter by 50% were 0.052 and 0.099 mg/liter cyprodinil and fludioxonil, respectively. In autumn 2008, 2009, and 2011, field-grown watermelon inoculated with isolates resistant to QoI fungicides and boscalid was treated with boscalid-pyraclostrobin alternated with chlorothalonil, cyprodinil-fludioxonil alternated with chlorothalonil, cyprodinil-difenoconazole alternated with chlorothalonil, tebuconazole alternated with chlorothalonil, chlorothalonil, or water. In 2008 and 2011, both cyprodinil treatments reduced disease severity compared with the water control treatment and chlorothalonil alone. In 2008 and 2009, cyprodinil-fludioxonil reduced severity compared with boscalid-pyraclostrobin and, in 2008, cyprodinil-difenoconazole and tebuconazole also did. Use of cyprodinil-fludioxonil should control gummy stem blight effectively and may delay development of resistance to cyprodinil and fludioxonil in D. bryoniae. However, because Botrytis cinerea became resistant to both cyprodinil and fludioxonil after multiple applications of cyprodinil-fludioxonil per season, prudent fungicide rotations should be followed when using cyprodinil-containing fungicides against D. bryoniae.


2007 ◽  
Vol 20 (7) ◽  
pp. 759-768 ◽  
Author(s):  
Il-Pyung Ahn ◽  
Sang-Woo Lee ◽  
Seok-Cheol Suh

A nonpathogenic rhizobacterium, Pseudomonas putida LSW17S, elicited systemic protection against Fusarium wilt and pith necrosis caused by Fusarium oxysporum f. sp. lycopersici and P. corrugata in tomato (Lycopersicon esculentum L.). LSW17S also confers disease resistance against P. syringae pv. tomato DC3000 (DC3000) on Arabidopsis ecotype Col-0. To investigate mechanisms underlying disease protection, expression patterns of defense-related genes PR1, PR2, PR5, and PDF1.2 and cellular defense responses such as hydrogen peroxide accumulation and callose deposition were investigated. LSW17S treatment exhibited the typical phenomena of priming. Strong and faster transcription of defense-related genes was induced and hydrogen peroxide or callose were accumulated in Arabidopsis treated with LSW17S and infected with DC3000. In contrast, individual actions of LSW17S and DC3000 did not elicit rapid molecular and cellular defense responses. Priming by LSW17S was translocated systemically and retained for more than 10 days. Treatment with LSW17S reduced pathogen proliferation in Arabidopsis ecotype Col-0 expressing bacterial NahG; however, npr1, etr1, and jar1 mutations impaired inhibition of pathogen growth. Cellular and molecular priming responses support these results. In sum, LSW17S primes Arabidopsis for NPR1-, ethylene-, and jasmonic acid-dependent disease resistance, and efficient molecular and cellular defense responses.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1991 ◽  
Author(s):  
Yanping Li ◽  
Shilin Tian ◽  
Xiaojun Yang ◽  
Xin Wang ◽  
Yuhai Guo ◽  
...  

Physcion and chrysophanol induce defense responses against powdery mildew in cucumbers. The combination of these two compounds has synergistic interaction against the disease. We performed RNA-seq on cucumber leaf samples treated with physcion and chrysophanol alone and with their combination. We generated 17.6 Gb of high-quality sequencing data (∼2 Gb per sample) and catalogued the expressions profiles of 12,293 annotated cucumber genes in each sample. We identified numerous differentially expressed genes that exhibited distinct expression patterns among the three treatments. The gene expression patterns of the Chr and Phy treatments were more similar to each other than to the Phy × Chr treatment. The Phy × Chr treatment induced the highest number of differentially expressed genes. This dramatic transcriptional change after Phy × Chr treatment leaves reflects that physcion combined with chrysophanol treatment was most closely associated with induction of disease resistance. The analysis showed that the combination treatment caused expression changes of numerous defense-related genes. These genes have known or potential roles in structural, chemical and signaling defense responses and were enriched in functional gene categories potentially responsible for cucumber resistance. These results clearly demonstrated that disease resistance in cucumber leaves was significantly influenced by the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to the defense response.


2021 ◽  
Vol 289 ◽  
pp. 110461
Author(s):  
Runsheng Ren ◽  
Xingping Yang ◽  
Jinhua Xu ◽  
Keyun Zhang ◽  
Man Zhang ◽  
...  

2011 ◽  
Vol 24 (8) ◽  
pp. 918-931 ◽  
Author(s):  
Sarah M. Collier ◽  
Louis-Philippe Hamel ◽  
Peter Moffett

Plant genomes encode large numbers of nucleotide-binding, leucine-rich repeat (NB-LRR) proteins, many of which are active in pathogen detection and defense response induction. NB-LRR proteins fall into two broad classes: those with a Toll and interleukin-1 receptor (TIR) domain at their N-terminus and those with a coiled-coil (CC) domain at the N-terminus. Within CC-NB-LRR-encoding genes, one basal clade is distinguished by having CC domains resembling the Arabidopsis thaliana RPW8 protein, which we refer to as CCR domains. Here, we show that CCR-NB-LRR-encoding genes are present in the genomes of all higher plants surveyed, and that they comprise two distinct subgroups: one typified by the Nicotiana benthamiana N-required gene 1 (NRG1) protein and the other typified by the Arabidopsis activated disease resistance gene 1 (ADR1) protein. We further report that, in contrast to CC-NB-LRR proteins, the CCR domains of both NRG1- and ADR1-like proteins are sufficient for the induction of defense responses, and that this activity appears to be SGT1-independent. Additionally, we report the apparent absence of both NRG1 homologs and TIR-NB-LRR-encoding genes from the dicot Aquilegia coerulea and the dicotyledonous order Lamiales as well as from monocotyledonous species. This strong correlation in occurrence is suggestive of a functional relationship between these two classes of NB-LRR proteins.


Sign in / Sign up

Export Citation Format

Share Document