scholarly journals Rhizobacteria-Induced Priming in Arabidopsis Is Dependent on Ethylene, Jasmonic Acid, and NPR1

2007 ◽  
Vol 20 (7) ◽  
pp. 759-768 ◽  
Author(s):  
Il-Pyung Ahn ◽  
Sang-Woo Lee ◽  
Seok-Cheol Suh

A nonpathogenic rhizobacterium, Pseudomonas putida LSW17S, elicited systemic protection against Fusarium wilt and pith necrosis caused by Fusarium oxysporum f. sp. lycopersici and P. corrugata in tomato (Lycopersicon esculentum L.). LSW17S also confers disease resistance against P. syringae pv. tomato DC3000 (DC3000) on Arabidopsis ecotype Col-0. To investigate mechanisms underlying disease protection, expression patterns of defense-related genes PR1, PR2, PR5, and PDF1.2 and cellular defense responses such as hydrogen peroxide accumulation and callose deposition were investigated. LSW17S treatment exhibited the typical phenomena of priming. Strong and faster transcription of defense-related genes was induced and hydrogen peroxide or callose were accumulated in Arabidopsis treated with LSW17S and infected with DC3000. In contrast, individual actions of LSW17S and DC3000 did not elicit rapid molecular and cellular defense responses. Priming by LSW17S was translocated systemically and retained for more than 10 days. Treatment with LSW17S reduced pathogen proliferation in Arabidopsis ecotype Col-0 expressing bacterial NahG; however, npr1, etr1, and jar1 mutations impaired inhibition of pathogen growth. Cellular and molecular priming responses support these results. In sum, LSW17S primes Arabidopsis for NPR1-, ethylene-, and jasmonic acid-dependent disease resistance, and efficient molecular and cellular defense responses.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1991 ◽  
Author(s):  
Yanping Li ◽  
Shilin Tian ◽  
Xiaojun Yang ◽  
Xin Wang ◽  
Yuhai Guo ◽  
...  

Physcion and chrysophanol induce defense responses against powdery mildew in cucumbers. The combination of these two compounds has synergistic interaction against the disease. We performed RNA-seq on cucumber leaf samples treated with physcion and chrysophanol alone and with their combination. We generated 17.6 Gb of high-quality sequencing data (∼2 Gb per sample) and catalogued the expressions profiles of 12,293 annotated cucumber genes in each sample. We identified numerous differentially expressed genes that exhibited distinct expression patterns among the three treatments. The gene expression patterns of the Chr and Phy treatments were more similar to each other than to the Phy × Chr treatment. The Phy × Chr treatment induced the highest number of differentially expressed genes. This dramatic transcriptional change after Phy × Chr treatment leaves reflects that physcion combined with chrysophanol treatment was most closely associated with induction of disease resistance. The analysis showed that the combination treatment caused expression changes of numerous defense-related genes. These genes have known or potential roles in structural, chemical and signaling defense responses and were enriched in functional gene categories potentially responsible for cucumber resistance. These results clearly demonstrated that disease resistance in cucumber leaves was significantly influenced by the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to the defense response.


2020 ◽  
Vol 21 (20) ◽  
pp. 7482
Author(s):  
Aarti Gupta ◽  
Mamta Bhardwaj ◽  
Lam-Son Phan Tran

Sensing of pathogen infection by plants elicits early signals that are transduced to affect defense mechanisms, such as effective blockage of pathogen entry by regulation of stomatal closure, cuticle, or callose deposition, change in water potential, and resource acquisition among many others. Pathogens, on the other hand, interfere with plant physiology and protein functioning to counteract plant defense responses. In plants, hormonal homeostasis and signaling are tightly regulated; thus, the phytohormones are qualified as a major group of signaling molecules controlling the most widely tinkered regulatory networks of defense and counter-defense strategies. Notably, the phytohormone jasmonic acid mediates plant defense responses to a wide array of pathogens. In this review, we present the synopsis on the jasmonic acid metabolism and signaling, and the regulatory roles of this hormone in plant defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae. We also elaborate on how this pathogen releases virulence factors and effectors to gain control over plant jasmonic acid signaling to effectively cause disease. The findings discussed in this review may lead to ideas for the development of crop cultivars with enhanced disease resistance by genetic manipulation.


Author(s):  
Seonghee Lee ◽  
Ramu S. Vemanna ◽  
Sunhee Oh ◽  
Clemencia M. Rojas ◽  
Youngjae Oh ◽  
...  

Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In this study, the metabolic enzyme formate dehydrogenase (FDH1) was identified to be involved in nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. Arabidopsis Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that SA is most likely involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to only mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 localized to mitochondria and the amount of FDH1 localized to mitochondria increased upon infection with host or nonhost pathogens. Interestingly, the subcellular localization of FDH1 was observed in both mitochondria and chloroplasts after infection with a nonhost pathogen in Arabidopsis. We speculate that FDH1 plays a role in cellular signaling networks between mitochondria and chloroplasts to produce coordinated defense responses such as SA-induced reactive oxygen species (ROS) generation and hypersensitive response (HR)-induced cell death against nonhost bacterial pathogens.


2003 ◽  
Vol 16 (6) ◽  
pp. 467-476 ◽  
Author(s):  
Ping Xu ◽  
Elison B. Blancaflor ◽  
Marilyn J. Roossinck

Cucumber mosaic virus (CMV) D satellite RNA (satRNA) attenuates the symptoms induced by CMV in most plants, but causes leaf epinasty and systemic necrosis in tomato plants, where programmed cell death (PCD) is involved. However, our understanding of the cellular and molecular responses to the infection of CMV D satRNA that result in this lethal disease remains limited. In this article, we show for the first time, by histochemical and molecular analysis, that multiple defense responses are specifically induced in CMV and D satRNA (CMV/D satRNA)-infected tomato plants but not in mock-inoculated or CMV-infected plants. These responses include callose deposition and hydrogen peroxide accumulation in infected plants. Furthermore, the transcription of several tomato defense-related genes (e.g., PR-1a1, PR-1b1, PR-2, and PR-10) were activated, and the expression of tomato PR-5 and some abiotic and biotic stress-responsive genes (e.g., catalase II and tomato analogs of Arabidopsis AtBI-1 and tobacco hsr203j) are enhanced. The activation and increase in expression of these genes is correlated with the appearance of leaf epinasty and the development of systemic necrosis in infected tomato plants, while increased expression of the hsr203j analog precedes the development of any disease symptoms. The spatial and temporal expression patterns of these genes as detected by RNA in situ hybridization point to the involvement of a complex developmental program that accompanies disease development resulting from CMV/D satRNA infection.


2005 ◽  
Vol 18 (8) ◽  
pp. 819-829 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Gabor Jakab ◽  
Laurent Barnavon ◽  
Jean-Marc Neuhaus ◽  
Brigitte Mauch-Mani

β-Aminobutyric acid (BABA) was used to induce resistance in grapevine, (Vitis vinifera) against downy mildew (Plasmopara viticola). This led to a strong reduction of mycelial growth and sporulation in the susceptible cv. Chasselas. Comparing different inducers, the best protection was achieved with BABA followed by jasmonic acid (JA), whereas benzo (1,2,3)-thiadiazole-7-carbothionic acid-Smethyl ester (a salicylic acid [SA] analog) and abscisic acid (ABA) treatment did not increase the resistance significantly. Marker genes for the SA and JA pathways showed potentiated expression patterns in BABA-treated plants following infection. The callose synthesis inhibitor 2-deoxy- D-glucose partially suppressed BABA- and JA-induced resistance against P. viticola in Chasselas. Application of the phenylalanine ammonia lyase inhibitor 2-aminoindan-2- phosphonic acid and the lipoxygenase (LOX) inhibitor 5, 8, 11, 14-eicosatetraynoic acid (ETYA) also led to a reduction of BABA-induced resistance (BABA-IR), suggesting that callose deposition as well as defense mechanisms depending on phenylpropanoids and the JA pathways all contribute to BABA-IR. The similar phenotype of BABA- and JA-induced resistance, the potentiated expression pattern of JA-regulated genes (LOX-9 and PR-4) following BABA treatment, and the suppression of BABA-IR with ETYA suggest an involvement of the JA pathway in BABA-IR of grapevine leading to a primed deposition of callose and lignin around the infection sites.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1261-1270 ◽  
Author(s):  
Eviness P. Nyalugwe ◽  
Martin J. Barbetti ◽  
Peta L. Clode ◽  
Roger A. C. Jones

Systemic hypersensitive resistance (SHR) caused by Turnip mosaic virus (TuMV) was studied by light microscopy and histochemical analysis in stem cross sections of Brassica juncea (Indian mustard) plants. Ten TuMV isolates were inoculated to leaves of susceptible line JM 06006, cv. Oasis CI, which carries TuMV systemic hypersensitivity gene TuRBJU 01, and F3 progeny plants obtained from a cross between them. Systemic mosaic (SM) symptoms were induced by all 10 isolates in plants of JM 06006, and by resistance-breaking isolate NSW-3 in all cv. Oasis CI and F3 plants. With the other nine isolates, cv. Oasis CI plants developed SHR while F3 progeny plants segregated for both phenotypes; mock-inoculated control plants never became infected. Presence of SHR did not delay systemic invasion as this commenced within 2 hours after inoculation (hai) and was almost complete by 72 hai regardless of whether plants subsequently developed SHR or SM. When stem cross sections sampled 9 to 12 days after inoculation were examined for the plant defense responses, phloem necrosis, hydrogen peroxide accumulation, and additional lignin deposition, sections from plants with SHR demonstrated all of these characteristics, but sections from plants with SM or mock-inoculation did not. Based on consolidated data from all isolates except NSW-3, stems developing SHR had significantly more occluded xylem vessels (P < 0.001) compared with stems from plants developing SM or mock-inoculated plants. Both light microscopy and histochemical tests with phloroglucinol-HCl and toluidine blue O indicated that the xylem occlusions could be gels. Thus, phloem necrosis, xylem occlusion, lignification, and hydrogen peroxide accumulation were all associated with the SHR in B. juncea plants carrying TuMV hypersensitivity gene TuRBJU 01. In addition, virus inclusion bodies were fewer in sections from plants with SHR. Phloem necrosis was apparently acting as the primary cause of SHR and xylem occlusion as an important secondary cause.


2011 ◽  
Vol 24 (8) ◽  
pp. 888-896 ◽  
Author(s):  
Franco Rubén Rossi ◽  
Andrés Gárriz ◽  
María Marina ◽  
Fernando Matías Romero ◽  
María Elisa Gonzalez ◽  
...  

Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.


2019 ◽  
Vol 20 (4) ◽  
pp. 902 ◽  
Author(s):  
Md Hassan ◽  
Md Rahim ◽  
Hee-Jeong Jung ◽  
Jong-In Park ◽  
Hoy-Taek Kim ◽  
...  

Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.


2013 ◽  
Vol 103 (8) ◽  
pp. 776-784 ◽  
Author(s):  
Giorgio Gambino ◽  
Paolo Boccacci ◽  
Paolo Margaria ◽  
Sabrina Palmano ◽  
Ivana Gribaudo

Flavescence dorée (FD) is considered one of the most severe phytoplasma diseases affecting grapevine. The spontaneous, complete, and stable remission of the symptoms of FD (recovery) is a phenomenon that may occur in infected grapevines. The molecular bases of this phenomenon are still unclear, although some works suggest that recovery could be linked to the accumulation of hydrogen peroxide (H2O2). Several genes coding for enzymes involved in H2O2 metabolism, in the ascorbate-glutathione cycle, defense responses, and the biosynthesis of hormones were identified. The H2O2 content was biochemically determined and the expression levels of 44 genes were analyzed through quantitative real-time reverse-transcription polymerase chain reaction in healthy (H), infected by FD-associated phytoplasma (I), and 2-years-recovered (R) plants of Vitis vinifera ‘Barbera’. In tissues of R plants, large amounts of H2O2 were detected, essentially linked to an upregulation of genes involved in the production of H2O2 (germin-like protein and glycolate oxidase); whereas, in I grapevines, the overexpression of some scavenging genes reduced the quantity of H2O2. The recovery state was characterized by the activation of ethylene biosynthesis and of defense genes not linked to salicylic acid (SA) signaling, such as the WRKY2 transcription factor. Conversely, I plants reacted to phytoplasma with SA-mediated signaling, even though this response does not appear to be effective against the pathogen.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Krista L. Plett ◽  
Sean L. Bithell ◽  
Adrian Dando ◽  
Jonathan M. Plett

Abstract Background The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes. Results A study involving six chickpea varieties demonstrated large genotype by soil nitrogen interaction effects on nodulation and further identified agronomic traits of genotypes (such as shoot weight) associated with high nodulation. We broadened our scope to consider 29 varieties and breeding lines to examine the relationship between soilborne disease resistance and the number of nodules developed and real-time nitrogen fixation. Results of this larger study supported the earlier genotype specific findings, however, disease resistance did not explain differences in nodulation across genotypes. Transcriptional profiling of six chickpea genotypes indicates that genes associated with signalling, N transport and cellular localization, as opposed to genes associated with the classical nodulation pathway, are more likely to predict whether a given genotype will exhibit high levels of nodule formation. Conclusions This research identified a number of key abiotic and genetic factors affecting chickpea nodule development and nitrogen fixation. These findings indicate that an improved understanding of genotype-specific factors affecting chickpea nodule induction and function are key research areas necessary to improving the benefits of rhizobial symbiosis in chickpea.


Sign in / Sign up

Export Citation Format

Share Document